Results 1  10
of
13
Pcompleteness of cellular automaton Rule 110
 In International Colloquium on Automata Languages and Programming (ICALP), volume 4051 of LNCS
, 2006
"... We show that the problem of predicting t steps of the 1D cellular automaton Rule 110 is Pcomplete. The result is found by showing that Rule 110 simulates deterministic Turing machines in polynomial time. As a corollary we find that the small universal Turing machines of Mathew Cook run in polyn ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
We show that the problem of predicting t steps of the 1D cellular automaton Rule 110 is Pcomplete. The result is found by showing that Rule 110 simulates deterministic Turing machines in polynomial time. As a corollary we find that the small universal Turing machines of Mathew Cook run in polynomial time, this is an exponential improvement on their previously known simulation time overhead.
Computation with finite stochastic chemical reaction networks
 Natural Computing
, 2008
"... Abstract. A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of autonomously following a logic program specified by a set of instructions, and interacting with its cellular environment. Strategies for incorporating logic in aqueous chemistry have ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
Abstract. A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of autonomously following a logic program specified by a set of instructions, and interacting with its cellular environment. Strategies for incorporating logic in aqueous chemistry have focused primarily on implementing components, such as logic gates, that are composed into larger circuits, with each logic gate in the circuit corresponding to one or more molecular species. With this paradigm, designing and producing new molecular species is necessary to perform larger computations. An alternative approach begins by noticing that chemical systems on the small scale are fundamentally discrete and stochastic. In particular, the exact molecular counts of each molecular species present, is an intrinsically available form of information. This might appear to be a very weak form of information, perhaps quite difficult for computations to utilize. Indeed, it has been shown that errorfree Turing universal computation is impossible in this setting. Nevertheless, we show a design of a chemical computer that achieves fast and reliable Turinguniversal computation using molecular counts. Our scheme uses only a small number of different molecular species to do computation of arbitrary complexity. The total probability of error of the computation can be made arbitrarily small (but not zero) by adjusting the initial molecular counts of certain species. While physical implementations would be difficult, these results demonstrate that molecular counts can be a useful form of information for small molecular systems such as those operating within cellular environments. Key words. stochastic chemical kinetics; molecular counts; Turinguniversal computation; probabilistic computation 1. Introduction. Many
On the time complexity of 2tag systems and small universal turing machines
 In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2006
"... We show that 2tag systems efficiently simulate Turing machines. As a corollary we find that the small universal Turing machines of Rogozhin, Minsky and others simulate Turing machines in polynomial time. This is an exponential improvement on the previously known simulation time overhead and improve ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
We show that 2tag systems efficiently simulate Turing machines. As a corollary we find that the small universal Turing machines of Rogozhin, Minsky and others simulate Turing machines in polynomial time. This is an exponential improvement on the previously known simulation time overhead and improves a forty year old result in the area of small universal Turing machines. 1
Four Small Universal Turing Machines
, 2009
"... We present universal Turing machines with statesymbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These machines simulate our new variant of tag system, the bitag system and are the smallest known singletape universal Turing machines with 5, 4, 3 and 2symbols, respectively. Our 5symbol machin ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
We present universal Turing machines with statesymbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These machines simulate our new variant of tag system, the bitag system and are the smallest known singletape universal Turing machines with 5, 4, 3 and 2symbols, respectively. Our 5symbol machine uses the same number of instructions (22) as the smallest known universal Turing machine by Rogozhin. Also, all of the universal machines we present here simulate Turing machines in polynomial time.
Small semiweakly universal Turing machines
 Machines, Computations and Universality (MCU), volume 4664 of LNCS
, 2007
"... Abstract. We present three small universal Turing machines that have 3 states and 7 symbols, 4 states and 5 symbols, and 2 states and 13 symbols, respectively. These machines are semiweakly universal which means that on one side of the input they have an infinitely repeated word, and on the other s ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Abstract. We present three small universal Turing machines that have 3 states and 7 symbols, 4 states and 5 symbols, and 2 states and 13 symbols, respectively. These machines are semiweakly universal which means that on one side of the input they have an infinitely repeated word, and on the other side there is the usual infinitely repeated blank symbol. This work can be regarded as a continuation of early work by Watanabe on semiweak machines. One of our machines has only 17 transition rules, making it the smallest known semiweakly universal Turing machine. Interestingly, two of our machines are symmetric with Watanabeâ€™s 7state and 3symbol, and 5state and 4symbol machines, even though we use a different simulation technique. 1.
Programmability of Chemical Reaction Networks
"... Summary. Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a wellstirred solution according to standard c ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Summary. Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a wellstirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and
The complexity of small universal Turing machines
 Computability in Europe 2007, volume 4497 of LNCS
, 2007
"... Abstract. We present small polynomial time universal Turing machines with statesymbol pairs of (5, 5), (6, 4), (9, 3) and (18, 2). These machines simulate our new variant of tag system, the bitag system and are the smallest known universal Turing machines with 5, 4, 3 and 2symbols respectively. O ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract. We present small polynomial time universal Turing machines with statesymbol pairs of (5, 5), (6, 4), (9, 3) and (18, 2). These machines simulate our new variant of tag system, the bitag system and are the smallest known universal Turing machines with 5, 4, 3 and 2symbols respectively. Our 5symbol machine uses the same number of instructions (22) as the smallest known universal Turing machine by Rogozhin. 1
Small weakly universal Turing machines
"... Abstract. We give small universal Turing machines with statesymbol pairs of (6, 2), (3,3) and (2,4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Abstract. We give small universal Turing machines with statesymbol pairs of (6, 2), (3,3) and (2,4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest known weakly universal Turing machines. Despite their small size these machines are efficient polynomial time simulators of Turing machines. 1
The complexity of small universal Turing machines: a survey
, 2007
"... We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are e ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of Turing machines. These are some of the most intuitively simple computational devices and previously the best known simulations were exponentially slow. We discuss recent work that shows that these machines are indeed efficient simulators. As a related result we also find that Rule 110, a wellknown elementary cellular automaton, is also efficiently universal. We also mention some old and new universal programsize results, including new small universal Turing machines and new weakly, and semiweakly, universal Turing machines. We then discuss some ideas for future work arising out of these, and other, results.