Results 1  10
of
500
Plenoptic Modeling: An ImageBased Rendering System
, 1995
"... Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for imagebased ..."
Abstract

Cited by 770 (23 self)
 Add to MetaCart
Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for imagebased rendering paradigms, such as morphing and view interpolation. The plenoptic function is a parameterized function for describing everything that is visible from a given point in space. We present an imagebased rendering system based on sampling, reconstructing, and resampling the plenoptic function. In addition, we introduce a novel visible surface algorithm and a geometric invariant for cylindrical projections that is equivalent to the epipolar constraint defined for planar projections.
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a family of volume rendering algorithms that reduces rendering times to one second. First we present a scanlineorder volume rendering algorithm that exploits coherence in both the volume data and the image. We show that scanlineorder algorithms are fundamentally more efficient than commonlyused ray casting algorithms because the latter must perform analytic geometry calculations (e.g. intersecting rays with axisaligned boxes). The new scanlineorder algorithm simply streams through the volume and the image in storage order. We describe variants of the algorithm for both parallel and perspective projections and
Photorealistic Scene Reconstruction by Voxel Coloring
, 1997
"... A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space w ..."
Abstract

Cited by 470 (21 self)
 Add to MetaCart
A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space whose voxels are traversed in a fixed visibility ordering. This strategy takes full account of occlusions and allows the input cameras to be far apart and widely distributed about the environment. The algorithm identifies a special set of invariant voxels which together form a spatial and photometric reconstruction of the scene, fully consistent with the input images.
Optical models for direct volume rendering
 IEEE Transactions on Visualization and Computer Graphics
, 1995
"... ..."
SemiAutomatic Generation of Transfer Functions for Direct Volume Rendering
 In IEEE Symposium on Volume Visualization
, 1998
"... Although direct volume rendering is a powerful tool for visualizing complex structures within volume data, the size and complexity of the parameter space controlling the rendering process makes generating an informative rendering challenging. In particular, the specification of the transfer function ..."
Abstract

Cited by 289 (7 self)
 Add to MetaCart
(Show Context)
Although direct volume rendering is a powerful tool for visualizing complex structures within volume data, the size and complexity of the parameter space controlling the rendering process makes generating an informative rendering challenging. In particular, the specification of the transfer function  the mapping from data values to renderable optical properties  is frequently a timeconsuming and unintuitive task. Ideally, the data being visualized should itself suggest an appropriate transfer function that brings out the features of interest without obscuring them with elements of little importance. We demonstrate that this is possible for a large class of scalar volume data, namely that where the regions of interest are the boundaries between different materials. A transfer function which makes boundaries readily visible can be generated from the relationship between three quantities: the data value and its first and second directional derivatives along the gradient direction. ...
A Polygonal Approximation to Direct Scalar Volume Rendering
 Computer Graphics
, 1990
"... One method of directly rendering a threedimensional volume of scalar data is to project each cell in a volume onto the screen. Rasterizing a volume cell is more complex than rasterizing a polygon. A method is presented that approximates tetrahedral volume cells with hardware renderable transparent ..."
Abstract

Cited by 255 (3 self)
 Add to MetaCart
One method of directly rendering a threedimensional volume of scalar data is to project each cell in a volume onto the screen. Rasterizing a volume cell is more complex than rasterizing a polygon. A method is presented that approximates tetrahedral volume cells with hardware renderable transparent triangles. This method produces results which are visually similar to more exact methods for scalar volume rendering, but is faster and has smaller memory requirements. The method is best suited for display of smoothlychanging data. CR Categories and Subject Descriptors: I.3.0 [Computer Graphics]: General; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling. Additional Key Words and Phrases: Volume rendering, scientific visualization. 1 Introduction Display of threedimensional scalar volumes has recently become an active area of research. A scalar volume is described by some function f(x; y; z) defined over some region R of threedimensional space. In many scientific ap...
PostRendering 3D Warping
 IN 1997 SYMPOSIUM ON INTERACTIVE 3D GRAPHICS
, 1997
"... A pair of rendered images and their Zbuffers contain almost all of the information necessary to rerender from nearby viewpoints. For the small changes in viewpoint that occur in a fraction of a second, this information is sufficient for high quality rerendering with cost independent of scene comp ..."
Abstract

Cited by 235 (15 self)
 Add to MetaCart
A pair of rendered images and their Zbuffers contain almost all of the information necessary to rerender from nearby viewpoints. For the small changes in viewpoint that occur in a fraction of a second, this information is sufficient for high quality rerendering with cost independent of scene complexity. Rerendering from previously computed views allows an orderofmagnitude increase in apparent frame rate over that provided by conventional rendering alone. It can also compensate for system latency in local or remote display. We use
An ImageBased Approach to ThreeDimensional Computer Graphics
, 1997
"... The conventional approach to threedimensional computer graphics produces images from geometric scene descriptions by simulating the interaction of light with matter. My research explores an alternative approach that replaces the geometric scene description with perspective images and replaces the s ..."
Abstract

Cited by 206 (6 self)
 Add to MetaCart
The conventional approach to threedimensional computer graphics produces images from geometric scene descriptions by simulating the interaction of light with matter. My research explores an alternative approach that replaces the geometric scene description with perspective images and replaces the simulation process with data interpolation. I derive an imagewarping equation that maps the visible points in a reference image to their correct positions in any desired view. This mapping from reference image to desired image is determined by the centerofprojection and pinholecamera model of the two images and by a generalized disparity value associated with each point in the reference image. This generalized disparity value, which represents the structure of the scene, can be determined from point correspondences between multiple reference images. The imagewarping equation alone is insufficient to synthesize desired images because multiple referenceimage points may map to a single point. I derive a new visibility algorithm that determines a drawing order for the image warp. This algorithm results in correct visibility for the desired image independent of the reference image’s contents. The utility of the imagebased approach can be enhanced with a more general pinholecamera
An evaluation of reconstruction filters for volume rendering
 Proceedings of IEEE Visualization
, 1994
"... To render images from a threedimensional array of sample values, it is necessary to interpolate between the samples. This paper is concerned with interpolation methods that are equivalent to convolving the samples with a reconstruction filter; this covers all commonly used schemes, including tril ..."
Abstract

Cited by 169 (1 self)
 Add to MetaCart
(Show Context)
To render images from a threedimensional array of sample values, it is necessary to interpolate between the samples. This paper is concerned with interpolation methods that are equivalent to convolving the samples with a reconstruction filter; this covers all commonly used schemes, including trilinear and cubic interpolation. We first outline the formal basis of interpolation in threedimensional signal processing theory. We then propose numerical metrics that can be used to measure filter characteristics that are relevant to the appearance of images generated using that filter. We apply those metrics to several previously used filters and relate the results to isosurface images of the interpolations. We show that the choice of interpolation scheme can have a dramatic effect on image quality, and we discuss the cost/benefit tradeoff inherent in choosing a filter. 1