Results 1  10
of
65
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 481 (20 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 82 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 70 (20 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
On probabilistic model checking
, 1996
"... Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative ..."
Abstract

Cited by 67 (12 self)
 Add to MetaCart
(Show Context)
Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three realworld case studies: a probabilistic security protocol, dynamic power management and a biological pathway. 1
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 50 (11 self)
 Add to MetaCart
(Show Context)
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
PCF extended with real numbers
, 1996
"... We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be ..."
Abstract

Cited by 49 (15 self)
 Add to MetaCart
We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be considered as “continuous words”. Concatenation of continuous words corresponds to refinement of partial information. The usual basic operations cons, head and tail used to explicitly or recursively define functions on words generalize to partial real numbers. We use this fact to give an operational semantics to the above referred extension of PCF. We prove that the operational semantics is sound and complete with respect to the denotational semantics. A program of real number type evaluates to a headnormal form iff its value is different from ⊥; if its value is different from ⊥ then it successively evaluates to headnormal forms giving better and better partial results converging to its value.
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
A Computational Model for Metric Spaces
 Theoretical Computer Science
, 1995
"... For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic pro ..."
Abstract

Cited by 44 (9 self)
 Add to MetaCart
(Show Context)
For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic proofs of Banach's fixed point theorem and of two classical results of Hutchinson: on a complete metric space, every hyperbolic iterated function system has a unique nonempty compact attractor, and every iterated function system with probabilities has a unique invariant measure with bounded support. We also show that the probabilistic power domain of BX provides an !continuous computational model for measure theory on a separable complete metric space X . 1 Introduction In this paper, we establish new connections between the theory of metric spaces and domain theory, the two basic mathematical structures in computer science. For every metric space X, we define a continuous poset (not necessar...
The troublesome probabilistic powerdomain
 Proceedings of the Third Workshop on Computation and Approximation
, 1998
"... In [12] it is shown that the probabilistic powerdomain of a continuous domain is again continuous. The category of continuous domains, however, is not cartesian closed, and one has to look at subcategories such as RB, the retracts of bifinite domains. [8] offers a proof that the probabilistic powerd ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
(Show Context)
In [12] it is shown that the probabilistic powerdomain of a continuous domain is again continuous. The category of continuous domains, however, is not cartesian closed, and one has to look at subcategories such as RB, the retracts of bifinite domains. [8] offers a proof that the probabilistic powerdomain construction can be restricted to RB. Inthispaper, wegiveacounterexampletoGraham’sproofanddescribe our own attempts at proving a closure result for the probabilistic powerdomain construction. We have positive results for finite trees and finite reversed trees. These illustrate the difficulties we face, rather than being a satisfying answer to the question of whether the probabilistic powerdomain and function spaces can be reconciled. We are more successful with coherent or Lawsoncompact domains. These form a category with many pleasing properties but they fall short of supporting function spaces. Along the way, we give a new proof of Jones ’ Splitting Lemma. 1
Power domains and iterated function systems
 Information and Computation
, 1996
"... We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniquene ..."
Abstract

Cited by 31 (10 self)
 Add to MetaCart
(Show Context)
We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS with probabilities, extending the classic results of Hutchinson for hyperbolic IFSs in this more general setting. We also present finite algorithms to obtain discrete and digitised approximations to the attractor and the invariant measure, extending the corresponding algorithms for hyperbolic IFSs. We then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain an algorithm to generate the invariant distribution on the digitised screen. The generalised Riemann integral is used to provide a formula for the expected value of almost everywhere continuous functions with respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz maps, one can estimate the integral up to any threshold of accuracy.] 1996 Academic Press, Inc. 1.