Results 1 - 10
of
217
Kernel-Based Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity fu ..."
Abstract
-
Cited by 900 (4 self)
- Add to MetaCart
(Show Context)
A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking. Keywords: non-rigid object tracking; target localization and representation; spatially-smooth similarity function; Bhattacharyya coefficient; face tracking. 1
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
A survey on visual surveillance of object motion and behaviors
- IEEE Transactions on Systems, Man and Cybernetics
, 2004
"... Abstract—Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux stat ..."
Abstract
-
Cited by 439 (6 self)
- Add to MetaCart
(Show Context)
Abstract—Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux statistics and congestion analysis, detection of anomalous behaviors, and interactive surveillance using multiple cameras, etc. In general, the processing framework of visual surveillance in dynamic scenes includes the following stages: modeling of environments, detection of motion, classification of moving objects, tracking, understanding and description of behaviors, human identification, and fusion of data from multiple cameras. We review recent developments and general strategies of all these stages. Finally, we analyze possible research directions, e.g., occlusion handling, a combination of twoand three-dimensional tracking, a combination of motion analysis and biometrics, anomaly detection and behavior prediction, content-based retrieval of surveillance videos, behavior understanding and natural language description, fusion of information from multiple sensors, and remote surveillance. Index Terms—Behavior understanding and description, fusion of data from multiple cameras, motion detection, personal identification, tracking, visual surveillance.
On-line selection of discriminative tracking features
, 2003
"... This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the ..."
Abstract
-
Cited by 356 (5 self)
- Add to MetaCart
(Show Context)
This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the object. Given a set of seed features, we compute log likelihood ratios of class conditional sample densities from object and background to form a new set of candidate features tailored to the local object/background discrimination task. The two-class variance ratio is used to rank these new features according to how well they separate sample distributions of object and background pixels. This feature evaluation mechanism is embedded in a mean-shift tracking system that adap-tively selects the top-ranked discriminative features for tracking. Examples are presented that demonstrate how this method adapts to changing appearances of both tracked object and scene background. We note susceptibility of the variance ratio feature selection method to distraction by spatially correlated background clutter, and develop an additional approach that seeks to minimize the likelihood of distraction.
M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene Using Region-Based Stereo
- International Journal of Computer Vision
, 2002
"... We present a system that is capable of segmenting, detecting and tracking multiple people in a cluttered scene using multiple synchronized cameras located far from each other. The system improves upon existing systems in many ways including: (1) We do not assume that a foreground connected compon ..."
Abstract
-
Cited by 225 (9 self)
- Add to MetaCart
We present a system that is capable of segmenting, detecting and tracking multiple people in a cluttered scene using multiple synchronized cameras located far from each other. The system improves upon existing systems in many ways including: (1) We do not assume that a foreground connected component belongs to only one object; rather, we segment the views taking into account color models for the objects and the background. This helps us to not only separate foreground regions belonging to different objects, but to also obtain better background regions than traditional background subtraction methods (as it uses foreground color models in the algorithm). (2) It is fully automatic and does not require any manual input or initializations of any kind. (3) Instead of taking decisions about object detection and tracking from a single view or camera pair, we collect evidences from each pair and combine the evidence to obtain a decision in the end. This helps us to obtain much better detection and tracking as opposed to traditional systems.
A Directionality based Location Discovery Scheme for Wireless Sensor Networks
, 2002
"... A sensor network i a large ad hoc network of densely diN tri buted sensors that are equi pped wi th low power wi reless transcei ers. Such networks can be appli9 for cooperati e si gnal detecti on, moni tori ng, and tracki ng, and are especiN3N useful for appli(# i s i remote or hazardous locati on ..."
Abstract
-
Cited by 127 (1 self)
- Add to MetaCart
A sensor network i a large ad hoc network of densely diN tri buted sensors that are equi pped wi th low power wi reless transcei ers. Such networks can be appli9 for cooperati e si gnal detecti on, moni tori ng, and tracki ng, and are especiN3N useful for appli(# i s i remote or hazardous locati ons. Thi s paper addresses the problem of locati on di scovery at the sensor nodes, whi chi s one of the central desi gn challengesi n sensor networks. We present a new method by whi ch a sensor node can determi nei ts locati on by li steni ng to wi93)fi4 transmi9CM( s from three or more fixed beacon nodes. The proposed methodi s based on an angle-of-arri al esti mati on techni que that does noti ncrease the complexi ty or cost of constructi on of the sensor nodes. We present the performance of the proposed method obtai ed from computer si ulati ons. Categories and Subject Descriptors B.8.2 [Hardware]: Performance Analysi s and Desi gnAi ds; I.1.4 [Symb olic and Algeb raic Manipulations]: Appli cati ons; D.2.2 [Software Engineering]: Desgi Tools and Techni ques General Terms Algori hms, Desi9 , Performance Keywords Sensor networks, locali zati on,di recti onal antennas,tri angulati on. 1.
Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... In this paper, we address the issue of tracking moving objects in an environment covered by multiple uncalibrated cameras with overlapping fields of view, typical of most surveillance setups. In such a scenario, it is essential to establish correspondence between tracks of the same object, seen in d ..."
Abstract
-
Cited by 124 (3 self)
- Add to MetaCart
(Show Context)
In this paper, we address the issue of tracking moving objects in an environment covered by multiple uncalibrated cameras with overlapping fields of view, typical of most surveillance setups. In such a scenario, it is essential to establish correspondence between tracks of the same object, seen in di#erent cameras, to recover complete information about the object. We call this the problem of consistent labeling of objects when seen in multiple cameras. We employ a novel approach of finding the limits of field of view (FOV) of each camera as visible in the other cameras. We show that if the FOV lines are known, it is possible to disambiguate between multiple possibilities for correspondence. We present a method to automatically recover these lines by observing motion in the environment. Furthermore, once these lines are initialized, the homography between the views can also be recovered. We present results on indoor and outdoor sequences, containing persons and vehicles.
Tracking across multiple cameras with disjoint views
- In IEEE International Conference on Computer Vision
, 2003
"... Conventional tracking approaches assume proximity in space, time and appearance of objects in successive observations. However, observations of objects are often widely separated in time and space when viewed from multiple non-overlapping cameras. To address this problem, we present a novel approach ..."
Abstract
-
Cited by 121 (5 self)
- Add to MetaCart
(Show Context)
Conventional tracking approaches assume proximity in space, time and appearance of objects in successive observations. However, observations of objects are often widely separated in time and space when viewed from multiple non-overlapping cameras. To address this problem, we present a novel approach for establishing object correspondence across non-overlapping cameras. Our multi-camera tracking algorithm exploits the redundance in paths that people and cars tend to follow, e.g. roads, walk-ways or corridors, by using motion trends and appearance of objects, to establish correspondence. Our system does not require any inter-camera calibration, instead the system learns the camera topology and path probabilities of objects using Parzen windows, during a training phase. Once the training is complete, correspondences are assigned using the maximum a posteriori (MAP) estimation framework. The learned parameters are updated with changing trajectory patterns. Experiments with real world videos are reported, which validate the proposed approach. 1.
Background modeling and subtraction of dynamic scenes
- Proc Int. Conf. Comput. Vision
, 2003
"... Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refe ..."
Abstract
-
Cited by 110 (2 self)
- Add to MetaCart
Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refers to a static structure with limited perturbation. In this paper, we address the problem of modeling dynamic scenes where the assumption of a static background is not valid. Waving trees, beaches, escalators, natural scenes with rain or snow are examples. Inspired by the work proposed in [4], we propose an on-line auto-regressive model to capture and predict the behavior of such scenes. Towards detection of events we introduce a new metric that is based on a state-driven comparison between the prediction and the actual frame. Promising results demonstrate the potentials of the proposed framework. 1