Results 1 
3 of
3
The category theoretic solution of recursive program schemes
 Proc. First Internat. Conf. on Algebra and Coalgebra in Computer Science (CALCO 2005), Lecture Notes in Computer Science
, 2006
"... Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: worki ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras ” we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study substitution in infinite trees, including secondorder substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes. For example, the classical Cantor twothirds set falls out as an interpreted
On iterable endofunctors
 Category Theory and Computer Science 2002, number 69 in Elect. Notes in Theor. Comp. Sci
, 2003
"... Completely iterative monads of Elgot et al. are the monads such that every guarded iterative equation has a unique solution. Free completely iterative monads are known to exist on every iteratable endofunctor H, i. e., one with final coalgebras of all functors H ( ) + X. We show that conversely, if ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Completely iterative monads of Elgot et al. are the monads such that every guarded iterative equation has a unique solution. Free completely iterative monads are known to exist on every iteratable endofunctor H, i. e., one with final coalgebras of all functors H ( ) + X. We show that conversely, if H generates a free completely iterative monad, then it is iteratable. Key words: monad, completely iterative, iterable 1
Substitution in nonwellfounded . . .
 ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE 82 NO. 1 (2003)
, 2003
"... Inspired from the recent developments in theories of nonwellfounded syntax (coinductively defined languages) and of syntax with binding operators, the structure of algebras of wellfounded and nonwellfounded terms is studied for a very general notion of signature permitting both simple variable bin ..."
Abstract
 Add to MetaCart
Inspired from the recent developments in theories of nonwellfounded syntax (coinductively defined languages) and of syntax with binding operators, the structure of algebras of wellfounded and nonwellfounded terms is studied for a very general notion of signature permitting both simple variable binding operators as well as operators of explicit substitution. This is done in an extensional mathematical setting of initial algebras and final coalgebras of endofunctors on a functor category. In the nonwellfounded case, the fundamental operation of substitution is more beneficially defined in terms of primitive corecursion than coiteration.