Results 11  20
of
532
ContextSensitive Learning Methods for Text Categorization
 ACM Transactions on Information Systems
, 1996
"... this article, we will investigate the performance of two recently implemented machinelearning algorithms on a number of large text categorization problems. The two algorithms considered are setvalued RIPPER, a recent rulelearning algorithm [Cohen A earlier version of this article appeared in Proc ..."
Abstract

Cited by 247 (13 self)
 Add to MetaCart
this article, we will investigate the performance of two recently implemented machinelearning algorithms on a number of large text categorization problems. The two algorithms considered are setvalued RIPPER, a recent rulelearning algorithm [Cohen A earlier version of this article appeared in Proceedings of the 19th Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR) pp. 307315
Exponentiated Gradient Versus Gradient Descent for Linear Predictors
 Information and Computation
, 1995
"... this paper, we concentrate on linear predictors . To any vector u 2 R ..."
Abstract

Cited by 247 (12 self)
 Add to MetaCart
this paper, we concentrate on linear predictors . To any vector u 2 R
A Framework for Collaborative, ContentBased and Demographic Filtering
 ARTIFICIAL INTELLIGENCE REVIEW
, 1999
"... We discuss learning a profile of user interests for recommending information sources such as Web pages or news articles. We describe the types of information available to determine whether to recommend a particular page to a particular user. This information includes the content of the page, the rat ..."
Abstract

Cited by 212 (6 self)
 Add to MetaCart
We discuss learning a profile of user interests for recommending information sources such as Web pages or news articles. We describe the types of information available to determine whether to recommend a particular page to a particular user. This information includes the content of the page, the ratings of the user on other pages and the contents of these pages, the ratings given to that page by other users and the ratings of these other users on other pages and demographic information about users. We describe how each type of information may be used individually and then discuss an approach to combining recommendations from multiple sources. We illustrate each approach and the combined approach in the context of recommending restaurants.
Tracking the best expert
 In Proceedings of the 12th International Conference on Machine Learning
, 1995
"... Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound th ..."
Abstract

Cited by 198 (18 self)
 Add to MetaCart
Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound the additional loss of the algorithm over the sum of the losses of the best experts for each segment. This is to model situations in which the examples change and different experts are best for certain segments of the sequence of examples. In the single segment case, the additional loss is proportional to log n, where n is the number of experts and the constant of proportionality depends on the loss function. Our algorithms do not produce the best partition; however the loss bound shows that our predictions are close to those of the best partition. When the number of segments is k +1and the sequence is of length ℓ, we can bound the additional loss of our algorithm over the best partition by O(k log n + k log(ℓ/k)). For the case when the loss per trial is bounded by one, we obtain an algorithm whose additional loss over the loss of the best partition is independent of the length of the sequence. The additional loss becomes O(k log n + k log(L/k)), where L is the loss of the best partition with k +1segments. Our algorithms for tracking the predictions of the best expert are simple adaptations of Vovk’s original algorithm for the single best expert case. As in the original algorithms, we keep one weight per expert, and spend O(1) time per weight in each trial.
Gambling in a rigged casino: The adversarial multiarmed bandit problem
, 1995
"... In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying ou ..."
Abstract

Cited by 189 (7 self)
 Add to MetaCart
In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions about the statistics of the slot machines. In this work, we make no statistical assumptions whatsoever about the nature of the process generating the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather than a wellbehaved stochastic process, has complete control over the payoffs. In a sequence of T plays, we prove that the expected perround payoff of our algorithm approaches that of the best arm at the rate O(T \Gamma1=2 ), and we give an improved rate of conver...
Online Convex Programming and Generalized Infinitesimal Gradient Ascent
, 2003
"... Convex programming involves a convex set F R and a convex function c : F ! R. The goal of convex programming is to nd a point in F which minimizes c. In this paper, we introduce online convex programming. In online convex programming, the convex set is known in advance, but in each step of some ..."
Abstract

Cited by 183 (4 self)
 Add to MetaCart
Convex programming involves a convex set F R and a convex function c : F ! R. The goal of convex programming is to nd a point in F which minimizes c. In this paper, we introduce online convex programming. In online convex programming, the convex set is known in advance, but in each step of some repeated optimization problem, one must select a point in F before seeing the cost function for that step. This can be used to model factory production, farm production, and many other industrial optimization problems where one is unaware of the value of the items produced until they have already been constructed. We introduce an algorithm for this domain, apply it to repeated games, and show that it is really a generalization of in nitesimal gradient ascent, and the results here imply that generalized in nitesimal gradient ascent (GIGA) is universally consistent.
A Dynamic Disk SpinDown Technique for Mobile Computing
, 1996
"... We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. Since one of the most critical resources in mobile computing environments is battery life, good energy conservation methods can dramatically increase the utility of mobile systems. We ..."
Abstract

Cited by 154 (7 self)
 Add to MetaCart
We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. Since one of the most critical resources in mobile computing environments is battery life, good energy conservation methods can dramatically increase the utility of mobile systems. We use a simple and efficient algorithm based on machine learning techniques that has excellent performance in practice. Our experimental results are based on traces collected from HP C2474s disks. Using this data, the algorithm outperforms several algorithms that are theoretically optimal in under various worstcase assumptions, as well as the best fixed timeout strategy. In particular, the algorithm reduces the power consumption of the disk to about half (depending on the disk's properties) of the energy consumed by a one minute fixed timeout. Since the algorithm adapts to usage patterns, it uses as little as 88% of the energy consumed by the best fixed timeout computed in retrospect. 1 In...
Universal prediction
 IEEE Transactions on Information Theory
, 1998
"... Abstract — This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both th ..."
Abstract

Cited by 136 (11 self)
 Add to MetaCart
Abstract — This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabilistic setting and the deterministic setting of the universal prediction problem are described with emphasis on the analogy and the differences between results in the two settings. Index Terms — Bayes envelope, entropy, finitestate machine, linear prediction, loss function, probability assignment, redundancycapacity, stochastic complexity, universal coding, universal prediction. I.
SCHAPIRE: Adaptive game playing using multiplicative weights
 Games and Economic Behavior
, 1999
"... We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the mult ..."
Abstract

Cited by 134 (14 self)
 Add to MetaCart
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicativeweight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our gameplaying algorithm is proved to be optimal in a very strong sense. Journal of Economic Literature
Game Theory, Online Prediction and Boosting
 In Proceedings of the Ninth Annual Conference on Computational Learning Theory
, 1996
"... We study the close connections between game theory, online prediction and boosting. After a brief review of game theory, we describe an algorithm for learning to play repeated games based on the online prediction methods of Littlestone and Warmuth. The analysis of this algorithm yields a simple pr ..."
Abstract

Cited by 133 (13 self)
 Add to MetaCart
We study the close connections between game theory, online prediction and boosting. After a brief review of game theory, we describe an algorithm for learning to play repeated games based on the online prediction methods of Littlestone and Warmuth. The analysis of this algorithm yields a simple proof of von Neumann's famous minmax theorem, as well as a provable method of approximately solving a game. We then show that the online prediction model is obtained by applying this gameplaying algorithm to an appropriate choice of game and that boosting is obtained by applying the same algorithm to the "dual" of this game. 1 INTRODUCTION The purpose of this paper is to bring out the close connections between game theory, online prediction and boosting. Briefly, game theory is the study of games and other interactions of various sorts. Online prediction is a learning model in which an agent predicts the classification of a sequence of items and attempts to minimize the total number of pre...