Results 1 
4 of
4
A Relational Model of NonDeterministic Dataflow
 In CONCUR'98, volume 1466 of LNCS
, 1998
"... . We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits ..."
Abstract

Cited by 27 (13 self)
 Add to MetaCart
. We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits with the view of categories of models for concurrency and the general treatment of bisimulation they provide. In particular it fits with the recent categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics, especially the usual axioms of monotone IO automata are read off from the definition of profunctors, (2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from the preservation properties associated with open maps and (3) a treatment of higherorder dataflow as a biproduct, essentially by following the geometry of interaction programme. 1 Introduction A fundament...
Traced Premonoidal Categories
, 1999
"... Motivated by some examples from functional programming, we propose a generalization of the notion of trace to symmetric premonoidal categories and of Conway operators to Freyd categories. We show that in a Freyd category, these notions are equivalent, generalizing a wellknown theorem relating trace ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Motivated by some examples from functional programming, we propose a generalization of the notion of trace to symmetric premonoidal categories and of Conway operators to Freyd categories. We show that in a Freyd category, these notions are equivalent, generalizing a wellknown theorem relating traces and Conway operators in cartesian categories.
A semantical approach to equilibria and rationality
, 905
"... ”An equilibrium does not appear because agents are rational, but rather agents appear to be rational because an equilibrium has been reached.[...] The task for game theory is to formulate a notion of rationality.” Larry Samuelson [20, p. 3] Abstract. Game theoretic equilibria are mathematical expres ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
”An equilibrium does not appear because agents are rational, but rather agents appear to be rational because an equilibrium has been reached.[...] The task for game theory is to formulate a notion of rationality.” Larry Samuelson [20, p. 3] Abstract. Game theoretic equilibria are mathematical expressions of rationality. Rational agents are used to model not only humans and their software representatives, but also organisms, populations, species and genes, interacting with each other and with the environment. Rational behaviors are achieved not only through conscious reasoning, but also through spontaneous stabilization at equilibrium points. Formal theories of rationality are usually guided by informal intuitions, which are acquired by observing some concrete economic, biological, or network processes. Treating such processes as instances of computation, we reconstruct and refine some basic notions of equilibrium and rationality from the some basic structures of computation. It is, of course, well known that equilibria arise as fixed points; the point is that semantics of computation of fixed points seems to be providing novel methods, algebraic and coalgebraic, for reasoning about them. 1
and uniform parameterized fixpoint operators
"... A note on strong dinaturality, initial algebras ..."