Results 1  10
of
37
Residual Algorithms: Reinforcement Learning with Function Approximation
 In Proceedings of the Twelfth International Conference on Machine Learning
, 1995
"... A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such ..."
Abstract

Cited by 237 (5 self)
 Add to MetaCart
A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such as a sigmoidal multilayer perceptron, a radialbasisfunction system, a memorybased learning system, or even a linear functionapproximation system. A new class of algorithms, residual gradient algorithms, is proposed, which perform gradient descent on the mean squared Bellman residual, guaranteeing convergence. It is shown, however, that they may learn very slowly in some cases. A larger class of algorithms, residual algorithms, is proposed that has the guaranteed convergence of the residual gradient algorithms, yet can retain the fast learning speed of direct algorithms. In fact, both direct and residual gradient algorithms are shown to be special cases of residual algorithms, and it is s...
Linear leastsquares algorithms for temporal difference learning
 Machine Learning
, 1996
"... Abstract. We introduce two new temporal difference (TD) algorithms based on the theory of linear leastsquares function approximation. We define an algorithm we call LeastSquares TD (LS TD) for which we prove probabilityone convergence when it is used with a function approximator linear in the adju ..."
Abstract

Cited by 182 (0 self)
 Add to MetaCart
Abstract. We introduce two new temporal difference (TD) algorithms based on the theory of linear leastsquares function approximation. We define an algorithm we call LeastSquares TD (LS TD) for which we prove probabilityone convergence when it is used with a function approximator linear in the adjustable parameters. We then define a recursive version of this algorithm, Recursive LeastSquares TD (RLS TD). Although these new TD algorithms require more computation per timestep than do Sutton's TD(A) algorithms, they are more efficient in a statistical sense because they extract more information from training experiences. We describe a simulation experiment showing the substantial improvement in learning rate achieved by RLS TD in an example Markov prediction problem. To quantify this improvement, we introduce the TD error variance of a Markov chain, arc,, and experimentally conclude that the convergence rate of a TD algorithm depends linearly on ~ro. In addition to converging more rapidly, LS TD and RLS TD do not have control parameters, such as a learning rate parameter, thus eliminating the possibility of achieving poor performance by an unlucky choice of parameters.
KernelBased Reinforcement Learning
 Machine Learning
, 1999
"... We present a kernelbased approach to reinforcement learning that overcomes the stability problems of temporaldifference learning in continuous statespaces. First, our algorithm converges to a unique solution of an approximate Bellman's equation regardless of its initialization values. Second, the ..."
Abstract

Cited by 102 (1 self)
 Add to MetaCart
We present a kernelbased approach to reinforcement learning that overcomes the stability problems of temporaldifference learning in continuous statespaces. First, our algorithm converges to a unique solution of an approximate Bellman's equation regardless of its initialization values. Second, the method is consistent in the sense that the resulting policy converges asymptotically to the optimal policy. Parametric value function estimates such as neural networks do not possess this property. Our kernelbased approach also allows us to show that the limiting distribution of the value function estimate is a Gaussian process. This information is useful in studying the biasvariance tradeo in reinforcement learning. We find that all reinforcement learning approaches to estimating the value function, parametric or nonparametric, are subject to a bias. This bias is typically larger in reinforcement learning than in a comparable regression problem.
Adaptive Critic Designs
 IEEE Transactions on Neural Networks
, 1997
"... We discuss a variety of Adaptive Critic Designs (ACDs) for neurocontrol. These are suitable for learning in noisy, nonlinear, and nonstationary environments. They have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Our discussion of these origins ..."
Abstract

Cited by 75 (10 self)
 Add to MetaCart
We discuss a variety of Adaptive Critic Designs (ACDs) for neurocontrol. These are suitable for learning in noisy, nonlinear, and nonstationary environments. They have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Our discussion of these origins leads to an explanation of three design families: Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), and Globalized Dual Heuristic Programming (GDHP). The main emphasis is on DHP and GDHP as advanced ACDs. We suggest two new modifications of the original GDHP design that are currently the only working implementations of GDHP. They promise to be useful for many engineering applications in the areas of optimization and optimal control. Based on one of these modifications, we present a unified approach to all ACDs. This leads to a generalized training procedure for ACDs. 1 The authors gratefully acknowledge support from the Texas Tech Center for Applied Research, Ford Moto...
Basis function adaptation in temporal difference reinforcement learning
 Annals of Operations Research
, 2005
"... Reinforcement Learning (RL) is an approach for solving complex multistage decision problems that fall under the general framework of Markov Decision Problems (MDPs), with possibly unknown parameters. Function approximation is essential for problems with a large state space, as it facilitates compact ..."
Abstract

Cited by 56 (3 self)
 Add to MetaCart
Reinforcement Learning (RL) is an approach for solving complex multistage decision problems that fall under the general framework of Markov Decision Problems (MDPs), with possibly unknown parameters. Function approximation is essential for problems with a large state space, as it facilitates compact representation and enables generalization. Linear approximation architectures (where the adjustable parameters are the weights of prefixed basis functions) have recently gained prominence due to efficient algorithms and convergence guarantees. Nonetheless, an appropriate choice of basis function is important for the success of the algorithm. In the present paper we examine methods for adapting the basis function during the learning process in the context of evaluating the value function under a fixed control policy. Using the Bellman approximation error as an optimization criterion, we optimize the weights of the basis function while simultaneously adapting the (nonlinear) basis function parameters. We present two algorithms for this problem. The first uses a gradientbased approach and the second applies the Cross Entropy method. The performance of the proposed algorithms is evaluated and compared in simulations.
Learning to Solve Markovian Decision Processes
, 1994
"... This dissertation is about building learning control architectures for agents embedded in finite, stationary, and Markovian environments. Such architectures give embedded agents the ability to improve autonomously the efficiency with which they can achieve goals. Machine learning researchers have d ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
This dissertation is about building learning control architectures for agents embedded in finite, stationary, and Markovian environments. Such architectures give embedded agents the ability to improve autonomously the efficiency with which they can achieve goals. Machine learning researchers have developed reinforcement learning (RL) algorithms based on dynamic programming (DP) that use the agent's experience in its environment to improve its decision policy incrementally. This is achieved by adapting an evaluation function in such a way that the decision policy that is "greedy" with respect to it improves with experience. This dissertation focuses on finite, stationary and Markovian environments for two reasons: it allows the develop...
Algorithms and Representations for Reinforcement Learning
, 2005
"... “If we knew what it was we were doing, it would not be called research, would it?” ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
“If we knew what it was we were doing, it would not be called research, would it?”
Improving Generalization for Temporal Difference Learning: The Successor Representation
, 1993
"... Estimation of returns over time, the focus of temporal difference (TD) algorithms, imposes particular constraints on good function approximators or representations. Appropriate generalization between states is determined by how similar their successors are, and representations should follow suit. Th ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
Estimation of returns over time, the focus of temporal difference (TD) algorithms, imposes particular constraints on good function approximators or representations. Appropriate generalization between states is determined by how similar their successors are, and representations should follow suit. This paper shows how TD machinery can be used to learn such representations, and illustrates, using a navigation task, the appropriately distributed nature of the result.
Scaling Reinforcement Learning Algorithms by Learning Variable Temporal Resolution Models
 IN PROCEEDINGS OF THE NINTH INTERNATIONAL MACHINE LEARNING CONFERENCE
, 1992
"... The close connection between reinforcement learning (RL) algorithms and dynamic programming algorithms has fueled research on RL within the machine learning community. Yet, despite increased theoretical understanding, RL algorithms remain applicable to simple tasks only. In this paper I use t ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
The close connection between reinforcement learning (RL) algorithms and dynamic programming algorithms has fueled research on RL within the machine learning community. Yet, despite increased theoretical understanding, RL algorithms remain applicable to simple tasks only. In this paper I use the abstract framework afforded by the connection to dynamic programming to discuss the scaling issues faced by RL researchers. I focus on learning agents that have to learn to solve multiple structured RL tasks in the same environment. I propose learning abstract environment models where the abstract actions represent "intentions" of achieving a particular state. Such models are variable temporal resolution models because in different parts of the state space the abstract actions span different number of time steps. The operational definitions of abstract actions can be learned incrementally using repeated experience at solving RL tasks. I prove that under certain conditions s...
Incremental Dynamic Programming for OnLine Adaptive Optimal Control
, 1994
"... Reinforcement learning algorithms based on the principles of Dynamic Programming (DP) have enjoyed a great deal of recent attention both empirically and theoretically. These algorithms have been referred to generically as Incremental Dynamic Programming (IDP) algorithms. IDP algorithms are intended ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
Reinforcement learning algorithms based on the principles of Dynamic Programming (DP) have enjoyed a great deal of recent attention both empirically and theoretically. These algorithms have been referred to generically as Incremental Dynamic Programming (IDP) algorithms. IDP algorithms are intended for use in situations where the information or computational resources needed by traditional dynamic programming algorithms are not available. IDP algorithms attempt to find a global solution to a DP problem by incrementally improving local constraint satisfaction properties as experience is gained through interaction with the environment. This class of algorithms is not new, going back at least as far as Samuel's adaptive checkersplaying programs,...