Results 1  10
of
55
Geometry images
 IN PROC. 29TH SIGGRAPH
, 2002
"... Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create onl ..."
Abstract

Cited by 273 (22 self)
 Add to MetaCart
Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create only semiregular meshes. The original mesh is typically decomposed into a set of disklike charts, onto which the geometry is parametrized and sampled. In this paper, we propose to remesh an arbitrary surface onto a completely regular structure we call a geometry image. It captures geometry as a simple 2D array of quantized points. Surface signals like normals and colors are stored in similar 2D arrays using the same implicit surface parametrization — texture coordinates are absent. To create a geometry image, we cut an arbitrary mesh along a network of edge paths, and parametrize the resulting single chart onto a square. Geometry images can be encoded using traditional image compression algorithms, such as waveletbased coders.
Global Conformal Surface Parameterization
, 2003
"... We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies. The parameterization is global in the sense that it preserves the conformality everywhere except for a few points, and has no boundary of discontinuity. We analyze the structure of the space ..."
Abstract

Cited by 112 (22 self)
 Add to MetaCart
We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies. The parameterization is global in the sense that it preserves the conformality everywhere except for a few points, and has no boundary of discontinuity. We analyze the structure of the space of all global conformal parameterizations of a given surface and find all possible solutions by constructing a basis of the underlying linear solution space. This space has a natural structure solely determined by the surface geometry, so our computing result is independent of connectivity, insensitive to resolution, and independent of the algorithms to discover it. Our algorithm is based on the properties of gradient fields of conformal maps, which are closedness, harmonity, conjugacy, duality and symmetry. These properties can be formulated by sparse linear systems, so the method is easy to implement and the entire process is automatic. We also introduce a novel topological modification method to improve the uniformity of the parameterization. Based on the global conformal parameterization of a surface, we can construct a conformal atlas and use it to build conformal geometry images which have very accurate reconstructed normals.
Greedy optimal homotopy and homology generators
 Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms
, 2005
"... Abstract We describe simple greedy algorithms to construct the shortest set of loops that generates either the fundamental group (with a given basepoint) or the first homology group (over any fixed coefficient field) of any oriented 2manifold. In particular, we show that the shortest set of loops t ..."
Abstract

Cited by 88 (12 self)
 Add to MetaCart
Abstract We describe simple greedy algorithms to construct the shortest set of loops that generates either the fundamental group (with a given basepoint) or the first homology group (over any fixed coefficient field) of any oriented 2manifold. In particular, we show that the shortest set of loops that generate the fundamental group of any oriented combinatorial 2manifold, with any given basepoint, can be constructed in O(n log n) time using a straightforward application of Dijkstra's shortest path algorithm. This solves an open problem of Colin de Verdi`ere and Lazarus.
Removing excess topology from isosurfaces
 ACM Trans. Graph
"... Many highresolution surfaces are created through isosurface extraction from volumetric representations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process can lead to geometrical and topological errors. Reducing geometrical errors during reconstruction is well studied ..."
Abstract

Cited by 74 (1 self)
 Add to MetaCart
Many highresolution surfaces are created through isosurface extraction from volumetric representations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process can lead to geometrical and topological errors. Reducing geometrical errors during reconstruction is well studied. However, isosurfaces often contain many topological errors in the form of tiny handles. These nearly invisible artifacts hinder subsequent operations like mesh simplification, remeshing, and parametrization. In this article we present a practical method for removing handles in an isosurface. Our algorithm makes an axisaligned sweep through the volume to locate handles, compute their sizes, and selectively remove them. The algorithm is designed to facilitate outofcore execution. It finds the handles by incrementally constructing and analyzing a Reeb graph. The size of a handle is measured by a short nonseparating cycle. Handles are removed robustly by modifying the volume rather than attempting “mesh surgery. ” Finally, the volumetric modifications are spatially localized to preserve geometrical detail. We demonstrate topology simplification on several complex models, and show its benefits for subsequent surface processing.
Featurebased surface parameterization and texture mapping
 ACM Transactions on Graphics
, 2005
"... and precomputation of solid textures. The stretch caused by a given parameterization determines the sampling rate on the surface. In this article, we present an automatic parameterization method for segmenting a surface into patches that are then flattened with little stretch. Many objects consist o ..."
Abstract

Cited by 71 (5 self)
 Add to MetaCart
and precomputation of solid textures. The stretch caused by a given parameterization determines the sampling rate on the surface. In this article, we present an automatic parameterization method for segmenting a surface into patches that are then flattened with little stretch. Many objects consist of regions of relatively simple shapes, each of which has a natural parameterization. Based on this observation, we describe a threestage featurebased patch creation method for manifold surfaces. The first two stages, genus reduction and feature identification, are performed with the help of distancebased surface functions. In the last stage, we create one or two patches for each feature region based on a covariance matrix of the feature’s surface points. To reduce stretch during patch unfolding, we notice that stretch is a 2 × 2 tensor, which in ideal situations is the identity. Therefore, we use the GreenLagrange tensor to measure and to guide the optimization process. Furthermore, we allow the boundary vertices of a patch to be optimized by adding scaffold triangles. We demonstrate our featurebased patch creation and patch unfolding methods for several textured models. Finally, to evaluate the quality of a given parameterization, we describe an imagebased error measure that takes into account stretch, seams, smoothness, packing efficiency, and surface visibility.
Intersurface mapping
 ACM TRANSACTIONS ON GRAPHICS
, 2004
"... We consider the problem of creating a map between two arbitrary triangle meshes. Whereas previous approaches compose parametrizations over a simpler intermediate domain, we directly create and optimize a continuous map between the meshes. Map distortion is measured with a new symmetric metric, and ..."
Abstract

Cited by 64 (4 self)
 Add to MetaCart
We consider the problem of creating a map between two arbitrary triangle meshes. Whereas previous approaches compose parametrizations over a simpler intermediate domain, we directly create and optimize a continuous map between the meshes. Map distortion is measured with a new symmetric metric, and is minimized during interleaved coarsetofine refinement of both meshes. By explicitly favoring low intersurface distortion, we obtain maps that naturally align corresponding shape elements. Typically, the user need only specify a handful of feature correspondences for initial registration, and even these constraints can be removed during optimization. Our method robustly satisfies hard constraints if desired. Intersurface mapping is shown using geometric and attribute morphs. Our general framework can also be applied to parametrize surfaces onto simplicial domains, such as coarse meshes (for semiregular remeshing), and octahedron and toroidal domains (for geometry image remeshing). In these settings, we obtain better parametrizations than with previous specialized techniques, thanks to our finegrain optimization.
Finding shortest nonseparating and noncontractible cycles for topologically embedded graphs
 Discrete Comput. Geom
, 2005
"... We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over p ..."
Abstract

Cited by 43 (12 self)
 Add to MetaCart
We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over previous results by Thomassen, and Erickson and HarPeled. We also give algorithms to find a shortest noncontractible cycle in O(g O(g) V 3/2) time, which improves previous results for fixed genus. This result can be applied for computing the (nonseparating) facewidth of embedded graphs. Using similar ideas we provide the first nearlinear running time algorithm for computing the facewidth of a graph embedded on the projective plane, and an algorithm to find the facewidth of embedded toroidal graphs in O(V 5/4 log V) time. 1
Mesh parameterization methods and their applications
 FOUNDATIONS AND TRENDSÂŐ IN COMPUTER GRAPHICS AND VISION
, 2006
"... We present a survey of recent methods for creating piecewise linear mappings between triangulations in 3D and simpler domains such as planar regions, simplicial complexes, and spheres. We also discuss emerging tools such as global parameterization, intersurface mapping, and parameterization with co ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
We present a survey of recent methods for creating piecewise linear mappings between triangulations in 3D and simpler domains such as planar regions, simplicial complexes, and spheres. We also discuss emerging tools such as global parameterization, intersurface mapping, and parameterization with constraints. We start by describing the wide range of applications where parameterization tools have been used in recent years. We then briefly review the pertinent mathematical background and terminology, before proceeding to survey the existing parameterization techniques. Our survey summarizes the main ideas of each technique and discusses its main properties, comparing it to other methods available. Thus it aims to provide guidance to researchers and developers when assessing the suitability of different methods for various applications. This survey focuses on the practical aspects of the methods available, such as time complexity and robustness and shows multiple examples of parameterizations generated using different methods, allowing the reader to visually evaluate and compare the results.
Optimal global conformal surface parameterization
 In IEEE Visualization
, 2004
"... Figure 1: Uniform global conformal parameterization ((a) and (b)) and region emphasized conformal parameterization ((c) and (d)). (a). Least uniform conformal parameterization with energy: 21.208e − 5. (b). Most uniform conformal parameterization with energy: 3.685e − 5. (c). Maximizing the paramete ..."
Abstract

Cited by 37 (15 self)
 Add to MetaCart
Figure 1: Uniform global conformal parameterization ((a) and (b)) and region emphasized conformal parameterization ((c) and (d)). (a). Least uniform conformal parameterization with energy: 21.208e − 5. (b). Most uniform conformal parameterization with energy: 3.685e − 5. (c). Maximizing the parameter area of the left half surface (with percentage: 83.48%). (d). Maximizing the parameter area of the right half surface (with percentage: 82.58%.) All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusion and electromagnetic fields on the surface. A good parameterization is crucial for simulation and visualization. This paper provides an explicit method for finding optimal global conformal parameterizations of arbitrary surfaces. It relies on certain holomorphic differential forms and conformal mappings from differential geometry and Riemann surface theories. Algorithms are developed to modify topology, locate zero points, and determine cohomology types of differential forms. The implementation is based on a finite dimensional optimization method. The optimal parameterization is intrinsic to the geometry, preserves angular structure, and can play an important role in various applications including texture mapping, remeshing, morphing and simulation. The method is demonstrated by visualizing the Riemann surface structure of real surfaces represented as triangle meshes. CR Categories: I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and object representations—Surface