Results 1 
3 of
3
A Hoare Logic for CallbyValue Functional Programs
"... Abstract. We present a Hoare logic for a callbyvalue programming language equipped with recursive, higherorder functions, algebraic data types, and a polymorphic type system in the style of Hindley and Milner. It is the theoretical basis for a tool that extracts proof obligations out of programs ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
Abstract. We present a Hoare logic for a callbyvalue programming language equipped with recursive, higherorder functions, algebraic data types, and a polymorphic type system in the style of Hindley and Milner. It is the theoretical basis for a tool that extracts proof obligations out of programs annotated with logical assertions. These proof obligations, expressed in a typed, higherorder logic, are discharged using offtheshelf automated or interactive theorem provers. Although the technical apparatus that we exploit is by now standard, its application to callbyvalue functional programming languages appears to be new, and (we claim) deserves attention. As a sample application, we check the partial correctness of a balanced binary search tree implementation. 1
Clowns to the left of me, jokers to the right (pearl): dissecting data structures
 Proceedings of the 35th ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 2008
"... This paper introduces a small but useful generalisation to the ‘derivative ’ operation on datatypes underlying Huet’s notion of ‘zipper ’ (Huet 1997; McBride 2001; Abbott et al. 2005b), giving a concrete representation to onehole contexts in data which is undergoing transformation. This operator, ‘ ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
This paper introduces a small but useful generalisation to the ‘derivative ’ operation on datatypes underlying Huet’s notion of ‘zipper ’ (Huet 1997; McBride 2001; Abbott et al. 2005b), giving a concrete representation to onehole contexts in data which is undergoing transformation. This operator, ‘dissection’, turns a containerlike functor into a bifunctor representing a onehole context in which elements to the left of the hole are distinguished in type from elements to its right. I present dissection here as a generic program, albeit for polynomial functors only. The notion is certainly applicable more widely, but here I prefer to concentrate on its diverse applications. For a start, maplike operations over the functor and foldlike operations over the recursive data structure it induces can be expressed by tail recursion alone. Further, the derivative is readily recovered from the dissection. Indeed, it is the dissection structure which delivers Huet’s operations for navigating zippers. The original motivation for dissection was to define ‘division’, capturing the notion of leftmost hole, canonically distinguishing values with no elements from those with at least one. Division gives rise to an isomorphism corresponding to the remainder theorem in algebra. By way of a larger example, division and dissection are exploited to give a relatively efficient generic algorithm for abstracting all occurrences of one term from another in a firstorder syntax. The source code for the paper is available online 1 and compiles with recent extensions to the Glasgow Haskell Compiler.
ISSN 02496399 ISRN INRIA/RR6261FR+ENGProgramming in JoCaml — Extended Version
"... de recherche ..."