Results 1 
4 of
4
Formal Verification of FloatingPoint Programs
, 2007
"... This paper introduces a methodology to perform formal verification of floatingpoint C programs. It extends an existing tool for the verification of C programs, Caduceus, with new annotations specific to floatingpoint arithmetic. The Caduceus firstorder logic model for C programs is extended acc ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
This paper introduces a methodology to perform formal verification of floatingpoint C programs. It extends an existing tool for the verification of C programs, Caduceus, with new annotations specific to floatingpoint arithmetic. The Caduceus firstorder logic model for C programs is extended accordingly. Then verification conditions expressing the correctness of the programs are obtained in the usual way and can be discharged interactively with the Coq proof assistant, using an existing Coq formalization of floatingpoint arithmetic. This methodology is already implemented and has been successfully applied to several short floatingpoint programs, which are presented in this paper.
Verified Real Number Calculations: A Library for Interval Arithmetic
, 2007
"... Real number calculations on elementary functions are remarkably difficult to handle in mechanical proofs. In this paper, we show how these calculations can be performed within a theorem prover or proof assistant in a convenient and highly automated as well as interactive way. First, we formally est ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
(Show Context)
Real number calculations on elementary functions are remarkably difficult to handle in mechanical proofs. In this paper, we show how these calculations can be performed within a theorem prover or proof assistant in a convenient and highly automated as well as interactive way. First, we formally establish upper and lower bounds for elementary functions. Then, based on these bounds, we develop a rational interval arithmetic where real number calculations take place in an algebraic setting. In order to reduce the dependency effect of interval arithmetic, we integrate two techniques: interval splitting and taylor series expansions. This pragmatic approach has been developed, and formally verified, in a theorem prover. The formal development also includes a set of customizable strategies to automate proofs involving explicit calculations over real numbers. Our ultimate goal is to provide guaranteed proofs of numerical properties with minimal human theoremprover interaction.
Formal Verification of FloatingPoint Programs Sylvie Boldo
"... This paper introduces a methodology to perform formal verification of floatingpoint C programs. It extends an existing tool for the verification of C programs, Caduceus, with new annotations specific to floatingpoint arithmetic. The Caduceus firstorder logic model for C programs is extended acc ..."
Abstract
 Add to MetaCart
This paper introduces a methodology to perform formal verification of floatingpoint C programs. It extends an existing tool for the verification of C programs, Caduceus, with new annotations specific to floatingpoint arithmetic. The Caduceus firstorder logic model for C programs is extended accordingly. Then verification conditions expressing the correctness of the programs are obtained in the usual way and can be discharged interactively with the Coq proof assistant, using an existing Coq formalization of floatingpoint arithmetic. This methodology is already implemented and has been successfully applied to several short floatingpoint programs, which are presented in this paper. 1