Results 1 
2 of
2
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by re ..."
Abstract

Cited by 65 (9 self)
 Add to MetaCart
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
On the Algebraic Foundation of Proof Assistants for Intuitionistic Type Theory
, 2008
"... An algebraic presentation of MartinLöf’s intuitionistic type theory is given which is based on the notion of a category with families with extra structure. We then present a typechecking algorithm for the normal forms of this theory, and sketch how it gives rise to an initial category with familie ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
An algebraic presentation of MartinLöf’s intuitionistic type theory is given which is based on the notion of a category with families with extra structure. We then present a typechecking algorithm for the normal forms of this theory, and sketch how it gives rise to an initial category with families with extra structure. In this way we obtain a purely algebraic formulation of the correctness of the typechecking algorithm which provides the core of proof assistants for intuitionistic type theory.