Results 1 
3 of
3
Combining algebraic effects with continuations
, 2007
"... We consider the natural combinations of algebraic computational effects such as sideeffects, exceptions, interactive input/output, and nondeterminism with continuations. Continuations are not an algebraic effect, but previously developed combinations of algebraic effects given by sum and tensor ext ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We consider the natural combinations of algebraic computational effects such as sideeffects, exceptions, interactive input/output, and nondeterminism with continuations. Continuations are not an algebraic effect, but previously developed combinations of algebraic effects given by sum and tensor extend, with effort, to include commonly used combinations of the various algebraic effects with continuations. Continuations also give rise to a third sort of combination, that given by applying the continuations monad transformer to an algebraic effect. We investigate the extent to which sum and tensor extend from algebraic effects to arbitrary monads, and the extent to which Felleisen et al.’s C operator extends from continuations to its combination with algebraic effects. To do all this, we use Dubuc’s characterisation of strong monads in terms of enriched large Lawvere theories.
Combining Continuations with Other Effects
 University of Birmingham
, 2004
"... A fundamental question, in modelling computational effects, is how to give a unified semantic account of modularity, i.e., a mathematical theory that supports the various combinations one naturally makes of computational effects such as exceptions, sideeffects, interactive input/output, nondetermin ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A fundamental question, in modelling computational effects, is how to give a unified semantic account of modularity, i.e., a mathematical theory that supports the various combinations one naturally makes of computational effects such as exceptions, sideeffects, interactive input/output, nondeterminism, and, particularly
Combining Continuations with Other Effects
"... A fundamental question, in modelling computational effects, is how to give a unified semantic account of modularity, i.e., a mathematical theory that supports the various combinations one naturally makes of computational effects such as exceptions, sideeffects, interactive input/output, nondetermin ..."
Abstract
 Add to MetaCart
A fundamental question, in modelling computational effects, is how to give a unified semantic account of modularity, i.e., a mathematical theory that supports the various combinations one naturally makes of computational effects such as exceptions, sideeffects, interactive input/output, nondeterminism, and, particularly for this workshop, continuations [2, 3, 5]. We have begun to give such an account over recent years for all of these effects other than continuations [8], describing the sum and the tensor, or commutative combination, of effects, starting from Eugenio Moggi's proposal to use monads to give semantics for each individual effect [15]. That has yielded the most commonly used combinations of the various effects. Here, we extend our account to include continuations. We consider three distinct ways in which continuations combine with the other effects: sum, tensor, and by applying the continuations monad transformer C(); we analyse each of these in the following three Detections. We did not...