Results 1  10
of
127
Shape fluctuations and random matrices
, 1999
"... We study a certain random growth model in two dimensions closely related to the onedimensional totally asymmetric exclusion process. The results show that the shape fluctuations, appropriately scaled, converges in distribution to the TracyWidom largest eigenvalue distribution for the Gaussian Uni ..."
Abstract

Cited by 240 (10 self)
 Add to MetaCart
We study a certain random growth model in two dimensions closely related to the onedimensional totally asymmetric exclusion process. The results show that the shape fluctuations, appropriately scaled, converges in distribution to the TracyWidom largest eigenvalue distribution for the Gaussian Unitary Ensemble (GUE).
Grassmannian beamforming for multipleinput multipleoutput wireless systems
 IEEE TRANS. INFORM. THEORY
, 2003
"... Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multipleinput and multipleoutput (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamformi ..."
Abstract

Cited by 203 (27 self)
 Add to MetaCart
Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multipleinput and multipleoutput (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamforming vector which are not always realizable in practice. In this correspondence, a quantized maximum signaltonoise ratio (SNR) beamforming technique is proposed where the receiver only sends the label of the best beamforming vector in a predetermined codebook to the transmitter. By using the distribution of the optimal beamforming vector in independent identically distributed Rayleigh fading matrix channels, the codebook design problem is solved and related to the problem of Grassmannian line packing. The proposed design criterion is flexible enough to allow for side constraints on the codebook vectors. Bounds on the codebook size are derived to guarantee full diversity order. Results on the density of Grassmannian line packings are derived and used to develop bounds on the codebook size given a capacity or SNR loss. Monte Carlo simulations are presented that compare the probability of error for different quantization strategies.
From theory to practice: an overview of MIMO spacetime coded wireless systems
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2003
"... This paper presents an overview of recent progress in the area of multipleinput–multipleoutput (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of technique ..."
Abstract

Cited by 199 (5 self)
 Add to MetaCart
This paper presents an overview of recent progress in the area of multipleinput–multipleoutput (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space–time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.
On the distribution of the largest eigenvalue in principal components analysis
 Ann. Statist
, 2001
"... Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart distribu ..."
Abstract

Cited by 197 (2 self)
 Add to MetaCart
Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart distribution on n degrees of freedom with identity covariance. Consider the limit of large p and n with n/p = γ ≥ 1. When centered by µ p = � √ n − 1 + √ p � 2 and scaled by σ p = � √ n − 1 + √ p��1 / √ n − 1 + 1 / √ p � 1/3 � the distribution of x �1 � approaches the Tracy–Widom lawof order 1, which is defined in terms of the Painlevé II differential equation and can be numerically evaluated and tabulated in software. Simulations showthe approximation to be informative for n and p as small as 5. The limit is derived via a corresponding result for complex Wishart matrices using methods from random matrix theory. The result suggests that some aspects of large p multivariate distribution theory may be easier to apply in practice than their fixed p counterparts. 1. Introduction. The
Matrix models for betaensembles
 J. Math. Phys
, 2002
"... This paper constructs tridiagonal random matrix models for general (β> 0) βHermite (Gaussian) and βLaguerre (Wishart) ensembles. These generalize the wellknown Gaussian and Wishart models for β = 1,2,4. Furthermore, in the cases of the βLaguerre ensembles, we eliminate the exponent quantization ..."
Abstract

Cited by 86 (19 self)
 Add to MetaCart
This paper constructs tridiagonal random matrix models for general (β> 0) βHermite (Gaussian) and βLaguerre (Wishart) ensembles. These generalize the wellknown Gaussian and Wishart models for β = 1,2,4. Furthermore, in the cases of the βLaguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix models, and present some open problems.
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
, 2008
"... ..."
HighSNR power offset in multiantenna communication
 IEEE Transactions on Information Theory
, 2005
"... Abstract—The analysis of the multipleantenna capacity in the high regime has hitherto focused on the high slope (or maximum multiplexing gain), which quantifies the multiplicative increase as a function of the number of antennas. This traditional characterization is unable to assess the impact of ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
Abstract—The analysis of the multipleantenna capacity in the high regime has hitherto focused on the high slope (or maximum multiplexing gain), which quantifies the multiplicative increase as a function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as a function of �f, the high capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc., resides in the zeroorder term or power offset. The power offset, for which we find insightful closedform expressions, is shown to play a chief role for levels of practical interest. Index Terms—Antenna correlation, channel capacity, coherent communication, fading channels, high analysis, multiantenna arrays, Ricean channels.
On the Distribution of the Largest Principal Component
 ANN. STATIST
, 2000
"... Let x (1) denote square of the largest singular value of an n p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x (1) is the largest principal component of the covariance matrix X 0 X, or the largest eigenvalue of a p variate Wishart distribution on n degr ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Let x (1) denote square of the largest singular value of an n p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x (1) is the largest principal component of the covariance matrix X 0 X, or the largest eigenvalue of a p variate Wishart distribution on n degrees of freedom with identity covariance. Consider the limit of large p and n with n=p = 1: When centered by p = ( p n 1+ p p) 2 and scaled by p = ( p n 1+ p p)(1= p n 1+1= p p) 1=3 the distribution of x (1) approaches the TracyWidom law of order 1, which is dened in terms of the Painleve II dierential equation, and can be numerically evaluated and tabulated in software. Simulations show the approximation to be informative for n and p as small as 5. The limit is derived via a corresponding result for complex Wishart matrices using methods from random matrix theory. The result suggests that some aspects of large p multivariate distribution theory may be easier to ...
TracyWidom limit for the largest eigenvalue of a large class of complex sample covariance matrices
 ANN. PROBAB
, 2007
"... We consider the asymptotic fluctuation behavior of the largest eigenvalue of certain sample covariance matrices in the asymptotic regime where both dimensions of the corresponding data matrix go to infinity. More precisely, let X be an n × p matrix, and let its rows be i.i.d. complex normal vectors ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
We consider the asymptotic fluctuation behavior of the largest eigenvalue of certain sample covariance matrices in the asymptotic regime where both dimensions of the corresponding data matrix go to infinity. More precisely, let X be an n × p matrix, and let its rows be i.i.d. complex normal vectors with mean 0 and covariance �p. We show that for a large class of covariance matrices �p, the largest eigenvalue of X ∗ X is asymptotically distributed (after recentering and rescaling) as the Tracy–Widom distribution that appears in the study of the Gaussian unitary ensemble. We give explicit formulas for the centering and scaling sequences that are easy to implement and involve only the spectral distribution of the population covariance, n and p. The main theorem applies to a number of covariance models found in applications. For example, wellbehaved Toeplitz matrices as well as covariance matrices whose spectral distribution is a sum of atoms (under some conditions on the mass of the atoms) are among the models the theorem can handle. Generalizations of the theorem to certain spiked versions of our models and a.s. results about the largest eigenvalue are given. We also discuss a simple corollary that does not require normality of the entries of the data matrix and some consequences for applications in multivariate statistics.