Results 1  10
of
24
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Toward formal development of ML programs: foundations and methodology
, 1989
"... A formal methodology is presented for the systematic evolution of modular Standard ML programs from specifications by means of verified refinement steps, in the framework of the Extended ML specification language. Program development proceeds via a sequence of design (modular decomposition), codi ..."
Abstract

Cited by 51 (20 self)
 Add to MetaCart
A formal methodology is presented for the systematic evolution of modular Standard ML programs from specifications by means of verified refinement steps, in the framework of the Extended ML specification language. Program development proceeds via a sequence of design (modular decomposition), coding and refinement steps. For each of these three kinds of steps, conditions are given which ensure the correctness of the result. These conditions seem to be as weak as possible under the constraint of being expressible as "local" interface matching requirements. Interfaces are only required to match up to behavioural equivalence, which is seen as vital to the use of data abstraction in program development. Copyright c fl 1989 by D. Sannella and A. Tarlecki. All rights reserved. An extended abstract of this paper will appear in Proc. Colloq. on Current Issues in Programming Languages, Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Barcelona, Springer LNCS (1989)....
Interpolation in Grothendieck Institutions
 THEORETICAL COMPUTER SCIENCE
, 2003
"... It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which have recently emerged as an important mathematical structure underlying heterogenous multilogic specification. Our main result can be used in the applications in several different ways. It can be used to establish interpolation properties for multilogic Grothendieck institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance of the latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation is a nontrivial generalisation of unsorted interpolation. The concepts, results, and the applications discussed in this paper are illustrated with several examples from conventional logic and algebraic specification theory.
Extended ML: an institutionindependent framework for formal program development
 PROC. WORKSHOP ON CATEGORY THEORY AND COMPUTER PROGRAMMING
, 1986
"... The Extended ML specification language provides a framework for the formal stepwise development of modular programs in the Standard ML programming language from specifications. The object of this paper is to equip Extended ML with a semantics which is completely independent of the logical system use ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
The Extended ML specification language provides a framework for the formal stepwise development of modular programs in the Standard ML programming language from specifications. The object of this paper is to equip Extended ML with a semantics which is completely independent of the logical system used to write specifications, building on Goguen and Burstall's work on the notion of an institution as a formalisation of the concept of a logical system. One advantage of this is that it permits freedom in the choice of the logic used in writing specifications; an intriguing sideeffect is that it enables Extended ML to be used to develop programs in languages other than Standard ML since we view programs as simply Extended ML specifications which happen to include only "executable" axioms. The semantics of Extended ML is defined in terms of the primitive specificationbuilding operations of the ASL kernel specification language which itself has an institutionindependent semantics. It is no...
Algebraiccoalgebraic specification in CoCasl
 J. LOGIC ALGEBRAIC PROGRAMMING
, 2006
"... We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criter ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criteria for the existence of cofree models, also for several variants of nested cofree and free specifications. Moreover, we describe an extension of the existing proof support for Casl (in the shape of an encoding into higherorder logic) to CoCasl.
Using Limits of Parchments to Systematically Construct Institutions of Partial Algebras
 Recent Trends in Data Type Specifications. 11th Workshop on Specification of Abstract Data Types, volume 1130 of Lecture Notes in Computer Science
, 1996
"... this paper, so we leave them out here. Thus we can apply the idea of combining things via colimits to institutions themselves, with the special point that we have to take limits here instead of colimits. Taking limits in CAT results in categories of "amalgamated objects", i. e. we put signatures an ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
this paper, so we leave them out here. Thus we can apply the idea of combining things via colimits to institutions themselves, with the special point that we have to take limits here instead of colimits. Taking limits in CAT results in categories of "amalgamated objects", i. e. we put signatures and models together at the level of single objects. In contrast to this, sentences are combined with colimits in Set (due to the contravariant direction of the sentence component). That is, sets of sentences are combined. To show how this works, we introduce some wellknown institutions and morphisms between them.
General logics
 In Logic Colloquium 87
, 1989
"... theory, categorical logic. model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms repre ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
theory, categorical logic. model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A natural equivalence relation on institutions is defined such that its equivalence classes are logics. Several invariants are defined for this equivalence, including a Lindenbaum
Observational Logic, ConstructorBased Logic, and their Duality
, 2002
"... Observability and reachability are important concepts for formal software development. While observability concepts are used to specify the required observable behavior of a program or system, reachability concepts are used to describe the underlying data in terms of datatype constructors. In this p ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Observability and reachability are important concepts for formal software development. While observability concepts are used to specify the required observable behavior of a program or system, reachability concepts are used to describe the underlying data in terms of datatype constructors. In this paper we first reconsider the observational logic institution which provides a logical framework for dealing with observability. Then we develop in a completely analogous way the constructorbased logic institution which formalizes a novel treatment of reachability. Both institutions are tailored to capture the semantically correct realizations of a specification from either the observational or the reachability point of view. We show that there is a methodological and even formal duality between both frameworks. In particular, we establish a correspondence between observer operations and datatype constructors, observational and constructorbased algebras, fully abstract and reachable algebras, and observational and inductive consequences of specifications. The formal duality between the observability and reachability concepts is established in a categorytheoretic setting.
Representations, Hierarchies, and Graphs of Institutions
, 1996
"... For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em institutions} here. Different kinds of representations will lead to a looser or tighter connection of the institutions, with more or less good possibilities of faithfully embedding the semantics and of reusing proof support. In the second part, we then perform a detailed ``empirical'' study of the relations among various wellknown institutions of total, ordersorted and partial algebras and firstorder structures (all with Horn style, i.e.\ universally quantified conditional, axioms). We thus obtain a {\em graph} of institutions, with different kinds of edges according to the different kinds of representations between institutions studied in the first part. We also prove some separation results, leading to a {\em hierarchy} of institutions, which in turn naturally leads to five subgraphs of the above graph of institutions. They correspond to five different levels of expressiveness in the hierarchy, which can be characterized by different kinds of conditional generation principles. We introduce a systematic notation for institutions of total, ordersorted and partial algebras and firstorder structures. The notation closely follows the combination of features that are present in the respective institution. This raises the question whether these combinations of features can be made mathematically precise in some way. In the third part, we therefore study the combination of institutions with the help of socalled parchments (which are certain algebraic presentations of institutions) and parchment morphisms. The present book is a revised version of the author's thesis, where a number of mathematical problems (pointed out by Andrzej Tarlecki) and a number of misuses of the English language (pointed out by Bernd KriegBr\"uckner) have been corrected. Also, the syntax of specifications has been adopted to that of the recently developed Common Algebraic Specification Language {\sc Casl} \cite{CASL/Summary,Mosses97TAPSOFT}.
Categorybased Modularisation for Equational Logic Programming
 Acta Informatica
, 1996
"... : Although modularisation is basic to modern computing, it has been little studied for logicbased programming. We treat modularisation for equational logic programming using the institution of categorybased equational logic in three different ways: (1) to provide a generic satisfaction conditio ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
: Although modularisation is basic to modern computing, it has been little studied for logicbased programming. We treat modularisation for equational logic programming using the institution of categorybased equational logic in three different ways: (1) to provide a generic satisfaction condition for equational logics; (2) to give a categorybased semantics for queries and their solutions; and (3) as an abstract definition of compilation from one (equational) logic programming language to another. Regarding (2), we study soundness and completeness for equational logic programming queries and their solutions. This can be understood as ordinary soundness and completeness in a suitable "nonlogical" institution. Soundness holds for all module imports, but completeness only holds for conservative module imports. Categorybased equational signatures are seen as modules, and morphisms of such signatures as module imports. Regarding (3), completeness corresponds to compiler correc...