Results 1 
8 of
8
Spaceefficient planar convex hull algorithms
 Proc. Latin American Theoretical Informatics
, 2002
"... A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set.
Asymptotically Efficient inPlace Merging
 Theoretical Computer Science
"... Two lineartime algorithms for inplace merging are presented. Both algorithms perform at most m(t+1)+n=2 t +o(m) comparisons, where m and n are the sizes of the input sequences, m n, and t = blog 2 (n=m)c. The first algorithm is for unstable merging and it carries out no more than 3(n+m)+o(m) el ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
(Show Context)
Two lineartime algorithms for inplace merging are presented. Both algorithms perform at most m(t+1)+n=2 t +o(m) comparisons, where m and n are the sizes of the input sequences, m n, and t = blog 2 (n=m)c. The first algorithm is for unstable merging and it carries out no more than 3(n+m)+o(m) element moves. The second algorithm is for stable merging and it accomplishes at most 5n+12m+o(m) moves. Key words: Inplace algorithms, merging, sorting ? A preliminary and weaker version of this work appeared in Proceedings of the 20th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 969, SpringerVerlag, Berlin/Heidelberg (1995), 211220. 1 Supported by the Slovak Grant Agency for Science under contract 1/4376/97 (Project "Combinational Structures and Complexity of Algorithms"). 2 Partially supported by the Danish Natural Science Research Council under contracts 9400952 (Project "Computational Algorithmics") and 9701414 (Project "Experimental Algorithmics"). Preprint submitted to Elsevier Preprint December 19, 1995 1
Optimal inplace planar convex hull algorithms
 Proceedings of Latin American Theoretical Informatics (LATIN 2002), volume 2286 of Lecture Notes in Computer Science
, 2002
"... An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optima ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
(Show Context)
An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optimal, some more so than others...
A.: Stable minimum storage merging by symmetric comparisons
 Algorithms  ESA 2004. Volume 3221 of Lecture Notes in Computer Science
, 2004
"... Abstract. We introduce a new stable minimum storage algorithm for merging that needs O(m log ( n + 1)) element comparisons, where m and m n are the sizes of the input sequences with m ≤ n. According to the lower bound for merging, our algorithm is asymptotically optimal regarding the number of compa ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a new stable minimum storage algorithm for merging that needs O(m log ( n + 1)) element comparisons, where m and m n are the sizes of the input sequences with m ≤ n. According to the lower bound for merging, our algorithm is asymptotically optimal regarding the number of comparisons. The presented algorithm rearranges the elements to be merged by rotations, where the areas to be rotated are determined by a simple principle of symmetric comparisons. This style of minimum storage merging is novel and looks promising. Our algorithm has a short and transparent definition. Experimental work has shown that it is very efficient and so might be of high practical interest. 1
InSitu, Stable Merging by way of the Perfect Shuffle.
, 1999
"... We introduce a novel approach to the classical problem of insitu, stable merging, where "insitu" means the use of no more than O(log 2 n) bits of extra memory for lists of size n. Shufflemerge reduces the merging problem to the problem of realising the "perfect shuffle" permu ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
We introduce a novel approach to the classical problem of insitu, stable merging, where "insitu" means the use of no more than O(log 2 n) bits of extra memory for lists of size n. Shufflemerge reduces the merging problem to the problem of realising the "perfect shuffle" permutation, that is, the exact interleaving of two, equal length lists. The algorithm is recursive, using a logarithmic number of variables, and so does not use absolutely minimum storage, i.e., a fixed number of variables. A simple method of realising the perfect shuffle uses one extra bit per element, and so is not insitu. We show that the perfect shuffle can be attained using absolutely minimum storage and in linear time, at the expense of doubling the number of moves, relative to the simple method. We note that there is a worst case for Shufflemerge requiring time\Omega\Gamma n log n), where n is the sum of the lengths of the input lists. We also present an analysis of a variant of Shufflemerge which uses a ...
SpaceEfficient Planar Convex Hull Algorithms
"... A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set. ..."
Abstract
 Add to MetaCart
A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set.