Results 1  10
of
93
From Finite Sets to Feynman Diagrams
 Mathematics Unlimited  2001 And Beyond
, 2001
"... ‘Categorification ’ is the process of replacing equations by isomorphisms. We describe some of the ways a thoroughgoing emphasis on categorification can simplify and unify mathematics. We begin with elementary arithmetic, where the category of finite sets serves as a categorified version of the set ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
‘Categorification ’ is the process of replacing equations by isomorphisms. We describe some of the ways a thoroughgoing emphasis on categorification can simplify and unify mathematics. We begin with elementary arithmetic, where the category of finite sets serves as a categorified version of the set of natural numbers, with disjoint union and Cartesian product playing the role of addition and multiplication. We sketch how categorifying the integers leads naturally to the infinite loop space Ω ∞ S ∞ , and how categorifying the positive rationals leads naturally to a notion of the ‘homotopy cardinality ’ of a tame space. Then we show how categorifying formal power series leads to Joyal’s espèces des structures, or ‘structure types’. We also describe a useful generalization of structure types called ‘stuff types’. There is an inner product of stuff types that makes the category of stuff types into a categorified version of the Hilbert space of the quantized harmonic oscillator. We conclude by sketching how this idea gives a nice explanation of the combinatorics of Feynman diagrams. 1
Homotopy Invariants of Higher Dimensional Categories and Concurrency in Computer Science
, 1999
"... The strict globular omegacategories formalize the execution paths of a parallel automaton and the homotopies between them. One associates to such (and any) omegacategory C three homology theories. The first one is called the globular homology. It contains the oriented loops of C. The two other one ..."
Abstract

Cited by 49 (10 self)
 Add to MetaCart
The strict globular omegacategories formalize the execution paths of a parallel automaton and the homotopies between them. One associates to such (and any) omegacategory C three homology theories. The first one is called the globular homology. It contains the oriented loops of C. The two other ones are called the negative (resp. positive) corner homology. They contain in a certain manner the branching areas of execution paths or negative corners (resp. the merging areas of execution paths or positive corners) of C. Two natural linear maps called the negative (resp. the positive) Hurewicz morphism from the globular homology to the negative (resp. positive) corner homology are constructed. We explain the reason why these constructions allow the reinterpretation of some geometric problems coming from computer science.
Combinatorics Of Branchings In Higher Dimensional Automata
 Theory Appl. Categ
, 2001
"... We explore the combinatorial properties of the branching areas of execution paths in higher dimensional automata. Mathematically, this means that we investigate the combinatorics of the negative corner (or branching) homology of a globular #category and the combinatorics of a new homology theory ca ..."
Abstract

Cited by 35 (9 self)
 Add to MetaCart
We explore the combinatorial properties of the branching areas of execution paths in higher dimensional automata. Mathematically, this means that we investigate the combinatorics of the negative corner (or branching) homology of a globular #category and the combinatorics of a new homology theory called the reduced branching homology. The latter is the homology of the quotient of the branching complex by the subcomplex generated by its thin elements. Conjecturally it coincides with the non reduced theory for higher dimensional automata, that is #categories freely generated by precubical sets. As application, we calculate the branching homology of some #categories and we give some invariance results for the reduced branching homology. We only treat the branching side. The merging side, that is the case of merging areas of execution paths is similar and can be easily deduced from the branching side.
Representable Multicategories
 Advances in Mathematics
, 2000
"... We introduce the notion of representable multicategory , which stands in the same relation to that of monoidal category as bration does to contravariant pseudofunctor (into Cat). We give an abstract reformulation of multicategories as monads in a suitable Kleisli bicategory of spans. We describe ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
We introduce the notion of representable multicategory , which stands in the same relation to that of monoidal category as bration does to contravariant pseudofunctor (into Cat). We give an abstract reformulation of multicategories as monads in a suitable Kleisli bicategory of spans. We describe representability in elementary terms via universal arrows . We also give a doctrinal characterisation of representability based on a fundamental monadic adjunction between the 2category of multicategories and that of strict monoidal categories. The first main result is the coherence theorem for representable multicategories, asserting their equivalence to strict ones, which we establish via a new technique based on the above doctrinal characterisation. The other main result is a 2equivalence between the 2category of representable multicategories and that of monoidal categories and strong monoidal functors. This correspondence extends smoothly to one between bicategories and a se...
The EckmannHilton argument, higher operads and Enspaces, available at http://www.ics.mq.edu.au
 mbatanin/papers.html of Homotopy and Related Structures
"... The classical EckmannHilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
The classical EckmannHilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2category, then its Homset is a commutative monoid. A similar argument due to A.Joyal and R.Street shows that a one object, one arrow tricategory is ‘the same’ as a braided monoidal category. In this paper we extend this argument to arbitrary dimension. We demonstrate that for an noperad A in the author’s sense there exists a symmetric operad S n (A) called the nfold suspension of A such that the
Operads In HigherDimensional Category Theory
, 2004
"... The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n <= 2 ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n <= 2. Generalized operads and multicategories play other parts in higherdimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to ncategories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures.
An introduction to ncategories
 In 7th Conference on Category Theory and Computer Science
, 1997
"... ..."
A Cellular Nerve for Higher Categories
, 2002
"... ... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there exists a dense subcategory YA of the category of Aalgebras for each ooperad A in Batanin’s sense. Whenever A is contractible, the resulting homotopy category of Aalgebras (i.e. weak ocategories) is
Finite groups, spherical 2categories, and 4manifold invariants. arXiv:math.QA/9903003
"... In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], althou ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], although it requires a slight generalization of that construction. We show that the statesum invariants of Birmingham and Rakowski [11, 12, 13], who studied DijkgraafWitten type invariants in dimension 4, are special examples of the general construction that we present in this paper. They showed that their invariants are nontrivial by some explicit computations, so our construction includes interesting examples already. Finally, we indicate how our construction is related to homotopy 3types. This connection suggests that there are many more interesting examples of our construction to be found in the work on homotopy 3types, such as [15], for example. 1 1
The symmetrisation of noperads and compactification of real configuration spaces
 Adv. Math
"... It is well known that the forgetful functor from symmetric operads to nonsymmetric operads has a left adjoint Sym1 given by product with the symmetric group operad. It is also well known that this functor does not affect the category of algebras of the operad. From the point of view of the author’s ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
It is well known that the forgetful functor from symmetric operads to nonsymmetric operads has a left adjoint Sym1 given by product with the symmetric group operad. It is also well known that this functor does not affect the category of algebras of the operad. From the point of view of the author’s theory of higher operads, the nonsymmmetric operads are 1operads and Sym1 is the first term of the infinite series of left adjoint functors Symn, called symmetrisation functors, from noperads to symmetric operads with the property that the category of one object, one arrow,..., one (n − 1)arrow algebras of an noperad A is isomorphic to the category of algebras of Symn(A). In this paper we consider some geometrical and homotopical aspects of the symmetrisation of noperads. We follow Getzler and Jones and consider their decomposition of the FultonMacpherson operad of compactified real configuration spaces. We construct an noperadic counterpart of