Results 1  10
of
86
The counting lemma for regular kuniform hypergraphs. Random Structures and Algorithms
"... Abstract. Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of extremal graph theory. Many of its applications are based on its accompanying Counting Lemma: If G is an ℓpartite graph with V (G) = V1 ∪ · · · ∪ Vℓ and Vi  = n for all i ∈ [ℓ], and all pairs (Vi, Vj) are εr ..."
Abstract

Cited by 70 (12 self)
 Add to MetaCart
Abstract. Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of extremal graph theory. Many of its applications are based on its accompanying Counting Lemma: If G is an ℓpartite graph with V (G) = V1 ∪ · · · ∪ Vℓ and Vi  = n for all i ∈ [ℓ], and all pairs (Vi, Vj) are εregular of density d for ℓ 1 ≤ i < j ≤ ℓ, then G contains (1 ± fℓ(ε))d
Regularity lemma for kuniform hypergraphs, Random Structures and Algorithms
, 2004
"... Abstract. Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasirandomness, Random ..."
Abstract

Cited by 68 (6 self)
 Add to MetaCart
Abstract. Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasirandomness, Random
A variant of the hypergraph removal lemma
, 2006
"... Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respecti ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respectively. In this paper we shall give a selfcontained proof of this hypergraph removal lemma. In fact we prove a slight strengthening of the result, which we will use in a subsequent paper [29] to establish (among other things) infinitely many constellations of a prescribed shape in the Gaussian primes. 1.
Every monotone graph property is testable
 Proc. of STOC 2005
, 2005
"... A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most wellstudied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper i ..."
Abstract

Cited by 43 (9 self)
 Add to MetaCart
A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most wellstudied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper is that any monotone graph property can be tested with onesided error, and with query complexity depending only on ɛ. This result unifies several previous results in the area of property testing, and also implies the testability of wellstudied graph properties that were previously not known to be testable. At the heart of the proof is an application of a variant of Szemerédi’s Regularity Lemma. The main ideas behind this application may be useful in characterizing all testable graph properties, and in generally studying graph property testing. As a byproduct of our techniques we also obtain additional results in graph theory and property testing, which are of independent interest. One of these results is that the query complexity of testing testable graph properties with onesided error may be arbitrarily large. Another result, which significantly extends previous results in extremal graphtheory, is that for any monotone graph property P, any graph that is ɛfar from satisfying P, contains a subgraph of size depending on ɛ only, which does not satisfy P. Finally, we prove the following compactness statement: If a graph G is ɛfar from satisfying a (possibly infinite) set of monotone graph properties P, then it is at least δP(ɛ)far from satisfying one of the properties.
Applications of the regularity lemma for uniform hypergraphs
 ALGORITHMS
, 2006
"... In this note we discuss several combinatorial problems that can be addressed by the Regularity Method for hypergraphs. Based on recent results of Nagle, Schacht and the authors, we give here solutions to these problems. In particular, we prove the following: Let F be a kuniform hypergraph on t ver ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
In this note we discuss several combinatorial problems that can be addressed by the Regularity Method for hypergraphs. Based on recent results of Nagle, Schacht and the authors, we give here solutions to these problems. In particular, we prove the following: Let F be a kuniform hypergraph on t vertices and suppose an nvertex kuniform hypergraph H contains only o(n t) copies of F. Then one can delete o(n k) edges of H to make it Ffree. Similar results were recently obtained by W. T. Gowers.
A quantitative ergodic theory proof of Szemerédi’s theorem
, 2004
"... A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinato ..."
Abstract

Cited by 34 (14 self)
 Add to MetaCart
A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinatorial proof using the Szemerédi regularity lemma and van der Waerden’s theorem, Furstenberg’s proof using ergodic theory, Gowers’ proof using Fourier analysis and the inverse theory of additive combinatorics, and Gowers’ more recent proof using a hypergraph regularity lemma. Of these four, the ergodic theory proof is arguably the shortest, but also the least elementary, requiring in particular the use of transfinite induction (and thus the axiom of choice), decomposing a general ergodic system as the weakly mixing extension of a transfinite tower of compact extensions. Here we present a quantitative, selfcontained version of this ergodic theory proof, and which is “elementary ” in the sense that it does not require the axiom of choice, the use of infinite sets or measures, or the use of the Fourier transform or inverse theorems from additive combinatorics. It also gives explicit (but extremely poor) quantitative bounds.
Norm convergence of multiple ergodic averages for commuting transformations
, 2007
"... Let T1,..., Tl: X → X be commuting measurepreserving transformations on a probability space (X, X, µ). We show that the multiple ergodic averages 1 PN−1 N n=0 f1(T n 1 x)... fl(T n l x) are convergent in L2 (X, X, µ) as N → ∞ for all f1,..., fl ∈ L ∞ (X, X, µ); this was previously established fo ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
Let T1,..., Tl: X → X be commuting measurepreserving transformations on a probability space (X, X, µ). We show that the multiple ergodic averages 1 PN−1 N n=0 f1(T n 1 x)... fl(T n l x) are convergent in L2 (X, X, µ) as N → ∞ for all f1,..., fl ∈ L ∞ (X, X, µ); this was previously established for l = 2 by Conze and Lesigne [2] and for general l assuming some additional ergodicity hypotheses on the maps Ti and TiT −1 j by Frantzikinakis and Kra [3] (with the l = 3 case of this result established earlier in [29]). Our approach is combinatorial and finitary in nature, inspired by recent developments regarding the hypergraph regularity and removal lemmas, although we will not need the full strength of those lemmas. In particular, the l = 2 case of our arguments are a finitary analogue of those in [2].
Szemerédi’s Lemma for the analyst
 J. Geom. Func. Anal
"... Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many applications to extremal graph theory, graph property testing, combinatorial number theory, etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a result in analysis. We show three diff ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many applications to extremal graph theory, graph property testing, combinatorial number theory, etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a result in analysis. We show three different analytic interpretations. 1