Results 11  20
of
374
The Hybrid Tree: An Index Structure for High Dimensional Feature Spaces
 In Proceedings of ICDE’99
, 1999
"... Feature based similarity search is emerging as an important search paradigm in database systems. The technique used is to map the data items as points into a high dimensional feature space which is indexed using a multidimensional data structure. Similarity search then corresponds to a range search ..."
Abstract

Cited by 100 (11 self)
 Add to MetaCart
Feature based similarity search is emerging as an important search paradigm in database systems. The technique used is to map the data items as points into a high dimensional feature space which is indexed using a multidimensional data structure. Similarity search then corresponds to a range search over the data structure. Although several data structures have been proposed for feature indexing, none of them is known to scale beyond 1015 dimensional spaces. This paper introduces the hybrid tree – a multidimensional data structure for indexing high dimensional feature spaces. Unlike other multidimensional data structures, the hybrid tree cannot be classified as either a pure data partitioning (DP) index structure (e.g., Rtree, SStree, SRtree) or a pure space partitioning (SP) one (e.g., KDBtree, hBtree); rather, it “combines ” positive aspects of the two types of index structures a single data structure to achieve search performance more scalable to high dimensionalities than either of the above techniques (hence, the name “hybrid”). Furthermore, unlike many data structures (e.g., distance based index structures like SStree, SRtree), the hybrid tree can support queries based on arbitrary distance functions. Our experiments on “real” high dimensional large size feature databases demonstrate that the hybrid tree scales well to high dimensionality and large database sizes. It significantly outperforms both purely DPbased and SPbased index mechanisms as well as linear scan at all dimensionalities for large sized databases. 1.
A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data
, 2004
"... There are several aspects that might influence the performance achieved by existing learning systems. It has been reported that one of these aspects is related to class imbalance in which examples in training data belonging to one class heavily outnumber the examples in the other class. In this situ ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
There are several aspects that might influence the performance achieved by existing learning systems. It has been reported that one of these aspects is related to class imbalance in which examples in training data belonging to one class heavily outnumber the examples in the other class. In this situation, which is found in real world data describing an infrequent but important event, the learning system may have di#culties to learn the concept related to the minority class. In this work we perform a broad experimental evaluation involving ten methods, three of them proposed by the authors, to deal with the class imbalance problem in thirteen UCI data sets. Our experiments provide evidence that class imbalance does not systematically hinder the performance of learning systems. In fact, the problem seems to be related to learning with too few minority class examples in the presence of other complicating factors, such as class overlapping. Two of our proposed methods, Smote + Tomek and Smote + ENN, deal with these conditions directly, allying a known oversampling method with data cleaning methods in order to produce betterdefined class clusters. Our comparative experiments show that, in general, oversampling methods provide more accurate results than undersampling methods considering the area under the ROC curve (AUC). This result seems to contradict results previously published in the literature. Smote + Tomek and Smote + ENN presented very good results for data sets with a small number of positive examples. Moreover, Random oversampling, a very simple oversampling method, is very competitive to more complex oversampling methods. Since the oversampling methods provided very good performance results, we also measured the syntactic complexity of decision trees induc...
External Memory Data Structures
, 2001
"... In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynami ..."
Abstract

Cited by 81 (36 self)
 Add to MetaCart
In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynamic data structures. We also briefly discuss some of the most popular external data structures used in practice.
An investigation of practical approximate nearest neighbor algorithms
, 2004
"... This paper concerns approximate nearest neighbor searching algorithms, which have become increasingly important, especially in high dimensional perception areas such as computer vision, with dozens of publications in recent years. Much of this enthusiasm is due to a successful new approximate neares ..."
Abstract

Cited by 79 (2 self)
 Add to MetaCart
This paper concerns approximate nearest neighbor searching algorithms, which have become increasingly important, especially in high dimensional perception areas such as computer vision, with dozens of publications in recent years. Much of this enthusiasm is due to a successful new approximate nearest neighbor approach called Locality Sensitive Hashing (LSH). In this paper we ask the question: can earlier spatial data structure approaches to exact nearest neighbor, such as metric trees, be altered to provide approximate answers to proximity queries and if so, how? We introduce a new kind of metric tree that allows overlap: certain datapoints may appear in both the children of a parent. We also introduce new approximate kNN search algorithms on this structure. We show why these structures should be able to exploit the same randomprojectionbased approximations that LSH enjoys, but with a simpler algorithm and perhaps with greater efficiency. We then provide a detailed empirical evaluation on five large, high dimensional datasets which show up to 31fold accelerations over LSH. This result holds true throughout the spectrum of approximation levels.
The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data
 In Twelfth Conference on Uncertainty in Artificial Intelligence
, 2000
"... This paper is about metric data structures in highdimensional or nonEuclidean space that permit cached sufficient statistics accelerations of learning algorithms. ..."
Abstract

Cited by 75 (8 self)
 Add to MetaCart
This paper is about metric data structures in highdimensional or nonEuclidean space that permit cached sufficient statistics accelerations of learning algorithms.
Kernelized localitysensitive hashing for scalable image search
 IEEE International Conference on Computer Vision (ICCV
, 2009
"... Fast retrieval methods are critical for largescale and datadriven vision applications. Recent work has explored ways to embed highdimensional features or complex distance functions into a lowdimensional Hamming space where items can be efficiently searched. However, existing methods do not apply ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
Fast retrieval methods are critical for largescale and datadriven vision applications. Recent work has explored ways to embed highdimensional features or complex distance functions into a lowdimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for highdimensional kernelized data when the underlying feature embedding for the kernel is unknown. We show how to generalize localitysensitive hashing to accommodate arbitrary kernel functions, making it possible to preserve the algorithm’s sublinear time similarity search guarantees for a wide class of useful similarity functions. Since a number of successful imagebased kernels have unknown or incomputable embeddings, this is especially valuable for image retrieval tasks. We validate our technique on several largescale datasets, and show that it enables accurate and fast performance for examplebased object classification, feature matching, and contentbased retrieval. 1.
Supporting Ranked Boolean Similarity Queries in MARS
, 1998
"... To address the emerging needs of applications that require access to and retrieval of multimedia objects, we are developing the Multimedia Analysis and Retrieval System (MARS) [29]. In this paper, we concentrate on the retrieval subsystem of MARS and its support for contentbased queries over image ..."
Abstract

Cited by 73 (12 self)
 Add to MetaCart
To address the emerging needs of applications that require access to and retrieval of multimedia objects, we are developing the Multimedia Analysis and Retrieval System (MARS) [29]. In this paper, we concentrate on the retrieval subsystem of MARS and its support for contentbased queries over image databases. Contentbased retrieval techniques have been extensively studied for textual documents in the area of automatic information retrieval [40, 4]. This paper describes how these techniques can be adapted for ranked retrieval over image databases. Specifically, we discuss the ranking and retrieval algorithms developed in MARS based on the Boolean retrieval model and describe the results of our experiments that demonstrate the effectiveness of the developed model for image retrieval.
Indexing Large Metric Spaces for Similarity Search Queries
, 1999
"... In many database applications, one of the common queries is to find approximate matches to a given query item from a collection of data items. For example, given an image database, one may want to retrieve all images that are similar to a given query image. Distance based index structures are propos ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
In many database applications, one of the common queries is to find approximate matches to a given query item from a collection of data items. For example, given an image database, one may want to retrieve all images that are similar to a given query image. Distance based index structures are proposed for applications where the distance computations between objects of the data domain are expensive (such as high dimensional data), and the distance function used is metric. In this paper, we consider using distancebased index structures for similarity queries on large metric spaces. We elaborate on the approach of using reference points (vantage points) to partition the data space into spherical shelllike regions in a hierarchical manner. We introduce the multivantage point tree structure (mvptree) that uses more than one vantage points to partition the space into spherical cuts at each level. In answering similarity based queries, the mvptree also utilizes the precomputed (at con...
Similarity search over time series data using wavelets
 In ICDE
, 2002
"... We consider the use of wavelet transformations as a dimensionality reduction technique to permit efficient similarity search over highdimensional timeseries data. While numerous transformations have been proposed and studied, the only wavelet that has been shown to be effective for this applicatio ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
We consider the use of wavelet transformations as a dimensionality reduction technique to permit efficient similarity search over highdimensional timeseries data. While numerous transformations have been proposed and studied, the only wavelet that has been shown to be effective for this application is the Haar wavelet. In this work, we observe that a large class of wavelet transformations (not only orthonormal wavelets but also biorthonormal wavelets)can be used to support similarity search. This class includes the most popular and most effective wavelets being used in image compression. We present a detailed performance study of the effects of using different wavelets on the performance of similarity search for timeseries data. We include several wavelets that outperform both the Haar wavelet and the best known nonwavelet transformations for this application. To ensure our results are usable by an application engineer, we also show how to configure an indexing strategy for the best performing transformations. Finally, we identify classes of data that can be indexed efficiently using these wavelet transformations. 1.
Searching in Metric Spaces by Spatial Approximation
, 1999
"... We propose a new data structure to search in metric spaces. A metric space is formed by a collection of objects and a distance function defined among them, which satisfies the triangle inequality. The goal is, given a set of objects and a query, retrieve those objects close enough to the query. The ..."
Abstract

Cited by 64 (20 self)
 Add to MetaCart
We propose a new data structure to search in metric spaces. A metric space is formed by a collection of objects and a distance function defined among them, which satisfies the triangle inequality. The goal is, given a set of objects and a query, retrieve those objects close enough to the query. The complexity measure is the number of distances computed to achieve this goal. Our data structure, called satree ("spatial approximation tree"), is based on approaching spatially the searched objects, that is, getting closer and closer to them, rather than the classical divideandconquer approach of other data structures. We analyze our method and show that the number of distance evaluations to search among n objects is sublinear. We show experimentally that the satree is the best existing technique when the metric space is hard to search or the query has low selectivity. These are the most important unsolved cases in real applications. As a practical advantage, our data structure is one of the few that do not need to tune parameters, which makes it appealing for use by nonexperts.