Results 1  10
of
26
Notions of Computation and Monads
, 1991
"... The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with ..."
Abstract

Cited by 730 (15 self)
 Add to MetaCart
The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with total functions from calues to values) that may jeopardise the applicability of theoretical results, In this paper we introduce calculi. based on a categorical semantics for computations, that provide a correct basis for proving equivalence of programs for a wide range of notions of computation.
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 439 (6 self)
 Add to MetaCart
The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper is about logics for reasoning about programs, in particular for proving equivalence of programs. Following a consolidated tradition in theoretical computer science we identify programs with the closed terms, possibly containing extra constants, corresponding to some features of the programming language under consideration. There are three approaches to proving equivalence of programs: ffl T...
The origins of structural operational semantics
 Journal of Logic and Algebraic Programming
, 2004
"... We review the origins of structural operational semantics. The main publication ‘A Structural Approach to Operational Semantics, ’ also known as the ‘Aarhus Notes, ’ appeared in 1981 [G.D. Plotkin, A structural approach to operational semantics, DAIMI FN19, Computer Science Department, Aarhus Unive ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
We review the origins of structural operational semantics. The main publication ‘A Structural Approach to Operational Semantics, ’ also known as the ‘Aarhus Notes, ’ appeared in 1981 [G.D. Plotkin, A structural approach to operational semantics, DAIMI FN19, Computer Science Department, Aarhus University, 1981]. The development of the ideas dates back to the early 1970s, involving many people and building on previous work on programming languages and logic. The former included abstract syntax, the SECD machine, and the abstract interpreting machines of the Vienna school; the latter included the λcalculus and formal systems. The initial development of structural operational semantics was for simple functional languages, more or less variations of the λcalculus; after that the ideas were gradually extended to include languages with parallel features, such as Milner’s CCS. This experience set the ground for a more systematic exposition, the subject of an invited course of lectures at Aarhus University; some of these appeared in print as the 1981 Notes. We discuss the content of these lectures and some related considerations such as ‘small state’ versus ‘grand state, ’ structural versus compositional semantics, the influence of the Scott–Strachey approach to denotational semantics, the treatment of recursion and jumps, and static semantics. We next discuss relations with other work and some immediate further development. We conclude with an account of an old, previously unpublished, idea: an alternative, perhaps more readable, graphical presentation of systems of rules for operational semantics.
Monads and Effects
 IN INTERNATIONAL SUMMER SCHOOL ON APPLIED SEMANTICS APPSEM’2000
, 2000
"... A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structu ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structuring semantic descriptions, they were adopted by Wadler to structure Haskell programs, and now offer a general technique for delimiting the scope of effects, thus reconciling referential transparency and imperative operations within one programming language. Monads have been used to solve longstanding problems such as adding pointers and assignment, interlanguage working, and exception handling to Haskell, without compromising its purely functional semantics. The course will introduce monads, effects and related notions, and exemplify their applications in programming (Haskell) and in compilation (MLj). The course will present typed metalanguages for monads and related categorica...
Reference Counting as a Computational Interpretation of Linear Logic
 Journal of Functional Programming
, 1996
"... We develop formal methods for reasoning about memory usage at a level of abstraction suitable for establishing or refuting claims about the potential applications of linear logic for static analysis. In particular, we demonstrate a precise relationship between type correctness for a language based o ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
We develop formal methods for reasoning about memory usage at a level of abstraction suitable for establishing or refuting claims about the potential applications of linear logic for static analysis. In particular, we demonstrate a precise relationship between type correctness for a language based on linear logic and the correctness of a referencecounting interpretation of the primitives that the language draws from the rules for the `of course' operation. Our semantics is `lowlevel' enough to express sharing and copying while still being `highlevel ' enough to abstract away from details of memory layout. This enables the formulation and proof of a result describing the possible runtime reference counts of values of linear type. Contents 1 Introduction 1 2 Operational Semantics with Memory 4 3 A Programming Language Based on Linear Logic 9 4 Semantics 14 5 Properties of the Semantics 24 6 Linear Logic and Memory 27 7 Discussion 32 A Proofs of the Main Theorems 36 Acknowledgements...
Games and full abstraction for nondeterministic languages
, 1999
"... Abstract Nondeterminism is a pervasive phenomenon in computation. Often it arises as an emergent property of a complex system, typically as the result of contention for access to shared resources. In such circumstances, we cannot always know, in advance, exactly what will happen. In other circumstan ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
Abstract Nondeterminism is a pervasive phenomenon in computation. Often it arises as an emergent property of a complex system, typically as the result of contention for access to shared resources. In such circumstances, we cannot always know, in advance, exactly what will happen. In other circumstances, nondeterminism is explicitly introduced as a means of abstracting away from implementation details such as precise command scheduling and control flow. However, the kind of behaviours exhibited by nondeterministic computations can be extremely subtle in comparison to those of their deterministic counterparts and reasoning about such programs is notoriously tricky as a result. It is therefore important to develop semantic tools to improve our understanding of, and aid our reasoning about, such nondeterministic programs. In this thesis, we extend the framework of game semantics to encompass nondeterministic computation. Game semantics is a relatively recent development in denotational semantics; its main novelty is that it views a computation not as a static entity, but rather as a dynamic process of interaction. This perspective makes the theory wellsuited to modelling many aspects of computational processes: the original use of game semantics in modelling the simple functional language PCF has subsequently been extended to handle more complex control structures such as references and continuations.
An Axiomatic Approach to Adequacy
 University of Aarhus
, 1996
"... is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Dissertation Series. Copies may be obtained by contacting: BRICS ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Dissertation Series. Copies may be obtained by contacting: BRICS
A proof of Higman's lemma by structural induction
, 1993
"... This paper gives an example of such an inductive proof for a combinatorial problem. While there exist other constructive proofs of Higman's lemma (see for instance [10, 14]), the present argument has been recorded for its extreme formal simplicity. This simplicity allows us to give a complete descri ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
This paper gives an example of such an inductive proof for a combinatorial problem. While there exist other constructive proofs of Higman's lemma (see for instance [10, 14]), the present argument has been recorded for its extreme formal simplicity. This simplicity allows us to give a complete description of the computational content of the proof, first in term of a functional program, which follows closely the structure of the proof, and then in term of a program with state. The second program has an intuitive algorithmic meaning. In order to show that these two programs are equivalent, we introduce an intermediary program, which is a firstorder operational interpretation of the functional program. The relation between this program and the program with state is simple to establish. We can thus claim that we understand completely the computational behaviour of the proof. It is possible to give still another description of this algorithm, in term of process computing in parallel. In this form, the connection with NashWilliams non constructive argument is quite clear (though this algorithm was found first only as an alternative description of the computational content of the inductive proof). This inductive proof was actually found from the usual non constructive argument by using the technique described in [3]. These two facts give strong indication that this algorithm can be considered as the computational content of the NashWilliams argument.
Recursion on the partial continuous functionals
 Logic Colloquium ’05
, 2006
"... We describe a constructive theory of computable functionals, based on the partial continuous functionals as their intendend domain. Such a task had long ago been started by Dana Scott [28], under the wellknown abbreviation ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
We describe a constructive theory of computable functionals, based on the partial continuous functionals as their intendend domain. Such a task had long ago been started by Dana Scott [28], under the wellknown abbreviation