Results 1  10
of
73
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 882 (2 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 482 (5 self)
 Add to MetaCart
Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one. We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 393 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored. AMS subject classifications: 82P10, 11Y05, 68Q10. 1 Introduction One of the first results in the mathematics of computation, which underlies the subsequent development of much of theoretical computer science, was the distinction between computable and ...
A framework for fast quantum mechanical algorithms
"... A framework is presented for the design and analysis of quantum mechanical algorithms, the O ( N) step quantum search algorithm is an immediate consequence of this framework. It leads to several other searchtype applications an example is presented where the WalshHadamard (WH) transform of the q ..."
Abstract

Cited by 85 (1 self)
 Add to MetaCart
A framework is presented for the design and analysis of quantum mechanical algorithms, the O ( N) step quantum search algorithm is an immediate consequence of this framework. It leads to several other searchtype applications an example is presented where the WalshHadamard (WH) transform of the quantum search algorithm is replaced by another transform tailored to the parameters of the problem. Also, it leads to quantum mechanical algorithms for problems not immediately connected with search two such algorithms are presented for calculating the mean and median of statistical distributions. In order to classically estimate either the mean or median of a given distribution to a precision ε, needs Ω ε 2 – steps. The best known quantum mechanical algorithm for estimating the median takes steps, and that for estimating the mean takes O ε 1 –
Conventions for Quantum Pseudocode
, 1996
"... A few conventions for thinking about and writing quantum pseudocode are proposed. The conventions can be used for presenting any quantum algorithm down to the lowest level and are consistent with a quantum random access machine (QRAM) model for quantum computing. In principle a formal version of qua ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
A few conventions for thinking about and writing quantum pseudocode are proposed. The conventions can be used for presenting any quantum algorithm down to the lowest level and are consistent with a quantum random access machine (QRAM) model for quantum computing. In principle a formal version of quantum pseudocode could be used in a future extension of a conventional language. Note: This report is preliminary. Please let me know of any suggestions, omissions or errors so that I can correct them before distributing this work more widely. 1 Introduction It is increasingly clear that practical quantum computing will take place on a classical machine with access to quantum registers. The classical machine performs offline classical computations and controls the evolution of the quantum registers by initializing them in certain preparable states, operating on them with elementary unitary operations and measuring them when needed. Although architectures for an integrated machine are far f...
Information Distance
, 1997
"... While Kolmogorov complexity is the accepted absolute measure of information content in an individual finite object, a similarly absolute notion is needed for the information distance between two individual objects, for example, two pictures. We give several natural definitions of a universal inf ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
While Kolmogorov complexity is the accepted absolute measure of information content in an individual finite object, a similarly absolute notion is needed for the information distance between two individual objects, for example, two pictures. We give several natural definitions of a universal information metric, based on length of shortest programs for either ordinary computations or reversible (dissipationless) computations. It turns out that these definitions are equivalent up to an additive logarithmic term. We show that the information distance is a universal cognitive similarity distance. We investigate the maximal correlation of the shortest programs involved, the maximal uncorrelation of programs (a generalization of the SlepianWolf theorem of classical information theory), and the density properties of the discrete metric spaces induced by the information distances. A related distance measures the amount of nonreversibility of a computation. Using the physical theo...
Reversibility and adiabatic computation: trading time and space for energy
 PROC ROYAL SOCIETY OF LONDON, SERIES A
, 1997
"... Future miniaturization and mobilization of computing devices requires energy parsimonious ‘adiabatic’ computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
Future miniaturization and mobilization of computing devices requires energy parsimonious ‘adiabatic’ computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of ‘reversible ’ pebble games. We show that Bennett’s pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a tradeoff for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A timeirreversibility tradeoff hierarchy in the exponential time region is exhibited. Finally, extreme timeirreversibility tradeoffs for reversible computations in the thoroughly unrealistic range of computable versus noncomputable timebounds are given.
A Survey of ContinuousTime Computation Theory
 Advances in Algorithms, Languages, and Complexity
, 1997
"... Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists o ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists on the general theory of continuoustime models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. 1 Introduction After a long period of oblivion, interest in analog computation is again on the rise. The immediate cause for this new wave of activity is surely the success of the neural networks "revolution", which has provided hardware designers with several new numerically based, computationally interesting models that are structurally sufficiently simple to be implemented directly in silicon. (For designs and actual implementations of neural models in VLSI, see e.g. [30, 45]). However, the more fundamental...
Approximation by Quantum Circuits
 and 68Q9529 at http://www.c3.lanl.gov/laces, Los Alamos National Laboratory
, 1995
"... In a recent preprint by Deutsch et al. [5] the authors suggest the possibility of polynomial approximability of arbitrary unitary operations on n qubits by 2qubit unitary operations. We address that comment by proving strong lower bounds on the approximation capabilities of gqubit unitary operati ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
In a recent preprint by Deutsch et al. [5] the authors suggest the possibility of polynomial approximability of arbitrary unitary operations on n qubits by 2qubit unitary operations. We address that comment by proving strong lower bounds on the approximation capabilities of gqubit unitary operations for fixed g. We consider approximation of unitary operations on subspaces as well as approximation of states and of density matrices by quantum circuits in several natural metrics. The ability of quantum circuits to probabilistically solve decision problem and guess checkable functions is discussed. We also address exact unitary representation by reducing the upper bound by a factor of n 2 and by formalizing the argument given by Barenco et al. [1] for the lower bound. The overall conclusion is that almost all problems are hard to solve with quantum circuits. 1 Introduction There has recently been great interest in the properties of quantum computation and quantum circuits, partly due...