Results 1  10
of
18
Engineering Route Planning Algorithms
 ALGORITHMICS OF LARGE AND COMPLEX NETWORKS. LECTURE NOTES IN COMPUTER SCIENCE
, 2009
"... Algorithms for route planning in transportation networks have recently undergone a rapid development, leading to methods that are up to three million times faster than Dijkstra’s algorithm. We give an overview of the techniques enabling this development and point out frontiers of ongoing research on ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
Algorithms for route planning in transportation networks have recently undergone a rapid development, leading to methods that are up to three million times faster than Dijkstra’s algorithm. We give an overview of the techniques enabling this development and point out frontiers of ongoing research on more challenging variants of the problem that include dynamically changing networks, timedependent routing, and flexible objective functions.
Combining Hierarchical and GoalDirected SpeedUp Techniques for Dijkstra’s Algorithm
 PROCEEDINGS OF THE 7TH WORKSHOP ON EXPERIMENTAL ALGORITHMS (WEA’08), VOLUME 5038 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2008
"... In recent years, highly effective hierarchical and goaldirected speedup techniques for routing in large road networks have been developed. This paper makes a systematic study of combinations of such techniques. These combinations turn out to give the best results in many scenarios, including graphs ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
In recent years, highly effective hierarchical and goaldirected speedup techniques for routing in large road networks have been developed. This paper makes a systematic study of combinations of such techniques. These combinations turn out to give the best results in many scenarios, including graphs for unit disk graphs, grid networks, and timeexpanded timetables. Besides these quantitative results, we obtain general insights for successful combinations.
Engineering multilevel overlay graphs for shortestpath queries
 IN: PROCEEDINGS OF THE EIGHT WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS (ALENEX06), SIAM
, 2006
"... An overlay graph of a given graph G =(V,E) on a subset S ⊆ V is a graph with vertex set S that preserves some property of G. In particular, we consider variations of the multilevel overlay graph used in [21] to speed up shortestpath computations. In this work, we follow up and present general verte ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
An overlay graph of a given graph G =(V,E) on a subset S ⊆ V is a graph with vertex set S that preserves some property of G. In particular, we consider variations of the multilevel overlay graph used in [21] to speed up shortestpath computations. In this work, we follow up and present general vertex selection criteria and strategies of applying these criteria to determine a subset S inducing an overlay graph. The main contribution is a systematic experimental study where we investigate the impact of selection criteria and strategies on multilevel overlay graphs and the resulting speedup achieved for shortestpath queries. Depending on selection strategy and graph type, a centrality index criterion, a criterion based on planar separators, and vertex degree turned out to be good selection criteria.
Highperformance multilevel graphs
 IN: 9TH DIMACS IMPLEMENTATION CHALLENGE
, 2006
"... Shortestpath computation is a frequent task in practice. Owing to evergrowing realworld graphs, there is a constant need for faster algorithms. In the course of time, a large number of techniques to heuristically speed up Dijkstra’s shortestpath algorithm have been devised. This work reviews the ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Shortestpath computation is a frequent task in practice. Owing to evergrowing realworld graphs, there is a constant need for faster algorithms. In the course of time, a large number of techniques to heuristically speed up Dijkstra’s shortestpath algorithm have been devised. This work reviews the multilevel technique to answer shortestpath queries exactly [SWZ02, HSW06], which makes use of a hierarchical decomposition of the input graph and precomputation of supplementary information. We develop this preprocessing to the maximum and introduce several ideas to enhance this approach considerably, by reorganizing the precomputed data in partial graphs and optimizing them individually. To answer a given query, certain partial graphs are combined to a search graph, which can be explored by a simple and fast procedure. Experiments confirm query times of less than 200 µs for a road graph with over 15 million vertices.
SpeedUp Techniques for ShortestPath Computations
 IN PROCEEDINGS OF THE 24TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS’07
, 2007
"... During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can be used to prune or guide the search. Timetable information in public transport is a traditional application domain for such techniques. In this paper, we provide a condensed overview of new developments and extensions of classic results. Furthermore, we discuss how combinations of speedup techniques can be realized to take advantage from different strategies.
Experimental Study on SpeedUp Techniques for Timetable Information Systems
 PROCEEDINGS OF THE 7TH WORKSHOP ON ALGORITHMIC APPROACHES FOR TRANSPORTATION MODELING, OPTIMIZATION, AND SYSTEMS (ATMOS 2007
, 2007
"... During the last years, impressive speedup techniques for DIJKSTRA’s algorithm have been developed. Unfortunately, recent research mainly focused on road networks. However, fast algorithms are also needed for other applications like timetable information systems. Even worse, the adaption of recentl ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
During the last years, impressive speedup techniques for DIJKSTRA’s algorithm have been developed. Unfortunately, recent research mainly focused on road networks. However, fast algorithms are also needed for other applications like timetable information systems. Even worse, the adaption of recently developed techniques to timetable information is more complicated than expected. In this work, we check whether results from road networks are transferable to timetable information. To this end, we present an extensive experimental study of the most prominent speedup techniques on different types of inputs. It turns out that recently developed techniques are much slower on graphs derived from timetable information than on road networks. In addition, we gain amazing insights into the behavior of speedup techniques in general.
Drawing Graphs to Speed Up ShortestPath Computations
, 2005
"... We consider the problem of (repeatedly) computing singlesource singletarget shortest paths in large, sparse graphs. Previous investigations have shown the practical usefulness of geometric speedup techniques that guarantee the correctness of the result for shortestpath computations. However, such ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We consider the problem of (repeatedly) computing singlesource singletarget shortest paths in large, sparse graphs. Previous investigations have shown the practical usefulness of geometric speedup techniques that guarantee the correctness of the result for shortestpath computations. However, such speedup techniques utilize a layout of the graph which typically comes from geographic information. This paper examines the question how geometric speedup techniques can be used in case there is no layout given. We present an extensive computational study analyzing the usefulness of methods from graph drawing as foundation for such techniques. It turns out that using appropriate layout algorithms, a significant speedup can be achieved.
HighPerformance MultiLevel Routing
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 2008
"... Shortestpath computation is a frequent task in practice. Owing to evergrowing realworld graphs, there is a constant need for faster algorithms. In the course of time, a large number of techniques to heuristically speed up Dijkstra’s shortestpath algorithm have been devised. This work reviews the ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
Shortestpath computation is a frequent task in practice. Owing to evergrowing realworld graphs, there is a constant need for faster algorithms. In the course of time, a large number of techniques to heuristically speed up Dijkstra’s shortestpath algorithm have been devised. This work reviews the multilevel technique to answer shortestpath queries exactly [24, 9], which makes use of a hierarchical decomposition of the input graph and precomputation of supplementary information. We develop this preprocessing to the maximum and introduce several ideas to enhance this approach considerably, by reorganizing the precomputed data in partial graphs and optimizing them individually. To answer a given query, certain partial graphs are combined to a search graph, which can be explored by a simple and fast procedure. The concept behind the construction of the search graph is such that query times depend mainly on the number of partial graphs included. This is confirmed by experiments with different road graphs, each containing several million vertices, and time, distance, and unit metrics. Our query algorithm computes the distance between any pair of vertices in no more than 40 µs, however, a lengthy preprocessing is required to achieve this query performance.
Succinct greedy geometric routing in the euclidean plane
 IN Y.DONG, D.Z.DU, ANDO.IBARRA,EDITORS, INTERNATIONAL SYMPOSIUM ON ALGORITHMS AND COMPUTATION (ISAAC ’09), LNCS
, 2009
"... In greedy geometric routing, messages are passed in a network embedded in a metric space according to the greedy strategy of always forwarding messages to nodes that are closer to the destination. We show that greedy geometric routing schemes exist for the Euclidean metric in R², for 3connected pla ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In greedy geometric routing, messages are passed in a network embedded in a metric space according to the greedy strategy of always forwarding messages to nodes that are closer to the destination. We show that greedy geometric routing schemes exist for the Euclidean metric in R², for 3connected planar graphs, with coordinates that can be represented succinctly, that is, with O(log n) bits, where n is the number of vertices in the graph. Moreover, our embedding strategy introduces a coordinate system for R² that supports distance comparisons using our succinct coordinates. Thus, our scheme can be used to significantly reduce bandwidth, space, and header size over other recently discovered greedy geometric routing implementations for R².
LinearTime Algorithms for Geometric Graphs with Sublinearly Many Crossings
 SODA '09: PROCEEDINGS OF THE TWENTIETH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 2009
"... We provide lineartime algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We provide lineartime algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and singlesource shortest paths. Our algorithms all run in linear time in the standard comparisonbased computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bitlevel operations on memory words. Instead, our algorithms are based on a planarization method that “zeroes in ” on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a selfintersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor. 1