Results 1  10
of
12
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Elliptic Curves And Primality Proving
 Math. Comp
, 1993
"... The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. ..."
Abstract

Cited by 162 (22 self)
 Add to MetaCart
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm.
Speeding Up The Computations On An Elliptic Curve Using AdditionSubtraction Chains
 Theoretical Informatics and Applications
, 1990
"... We show how to compute x k using multiplications and divisions. We use this method in the context of elliptic curves for which a law exists with the property that division has the same cost as multiplication. Our best algorithm is 11.11% faster than the ordinary binary algorithm and speeds up acco ..."
Abstract

Cited by 96 (4 self)
 Add to MetaCart
We show how to compute x k using multiplications and divisions. We use this method in the context of elliptic curves for which a law exists with the property that division has the same cost as multiplication. Our best algorithm is 11.11% faster than the ordinary binary algorithm and speeds up accordingly the factorization and primality testing algorithms using elliptic curves. 1. Introduction. Recent algorithms used in primality testing and integer factorization make use of elliptic curves defined over finite fields or Artinian rings (cf. Section 2). One can define over these sets an abelian law. As a consequence, one can transpose over the corresponding groups all the classical algorithms that were designed over Z/NZ. In particular, one has the analogue of the p \Gamma 1 factorization algorithm of Pollard [29, 5, 20, 22], the Fermatlike primality testing algorithms [1, 14, 21, 26] and the public key cryptosystems based on RSA [30, 17, 19]. The basic operation performed on an elli...
Counting Points on Elliptic Curves Over Finite Fields
, 1995
"... . We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large; it is based on Shanks's babystepgiantstep strategy. The second algorithm is very efficient when the endomorphism ring of ..."
Abstract

Cited by 82 (0 self)
 Add to MetaCart
. We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large; it is based on Shanks's babystepgiantstep strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial time algorithm was impractical in its original form. We discuss several practical improvements by Atkin and Elkies. 1. Introduction. Let p be a large prime and let E be an elliptic curve over F p given by a Weierstraß equation Y 2 = X 3 +AX +B for some A, B 2 F p . Since the curve is not singular we have that 4A 3 + 27B 2 6j 0 (mod p). We describe several methods to count the rational points on E, i.e., methods to determine the number of points (x; y) on E with x; y 2 F p . Most o...
Implementation Of The AtkinGoldwasserKilian Primality Testing Algorithm
 Rapport de Recherche 911, INRIA, Octobre
, 1988
"... . We describe a primality testing algorithm, due essentially to Atkin, that uses elliptic curves over finite fields and the theory of complex multiplication. In particular, we explain how the use of class fields and genus fields can speed up certain phases of the algorithm. We sketch the actual impl ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
. We describe a primality testing algorithm, due essentially to Atkin, that uses elliptic curves over finite fields and the theory of complex multiplication. In particular, we explain how the use of class fields and genus fields can speed up certain phases of the algorithm. We sketch the actual implementation of this test and its use on testing large primes, the records being two numbers of more than 550 decimal digits. Finally, we give a precise answer to the question of the reliability of our computations, providing a certificate of primality for a prime number. IMPLEMENTATION DU TEST DE PRIMALITE D' ATKIN, GOLDWASSER, ET KILIAN R'esum'e. Nous d'ecrivons un algorithme de primalit'e, principalement du `a Atkin, qui utilise les propri'et'es des courbes elliptiques sur les corps finis et la th'eorie de la multiplication complexe. En particulier, nous expliquons comment l'utilisation du corps de classe et du corps de genre permet d'acc'el'erer les calculs. Nous esquissons l'impl'ementati...
The distribution of Lucas and elliptic pseudoprimes
, 2001
"... Let L(x) denote the counting function for Lucas pseudoprimes, and E(x) denote the elliptic pseudoprime counting function. We prove that, for large x, L(x) ≤ x L(x) −1/2 and E(x) ≤ x L(x) −1/3, where L(x) = exp(log xlog log log x / log log x). ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
Let L(x) denote the counting function for Lucas pseudoprimes, and E(x) denote the elliptic pseudoprime counting function. We prove that, for large x, L(x) ≤ x L(x) −1/2 and E(x) ≤ x L(x) −1/3, where L(x) = exp(log xlog log log x / log log x).
Elliptic Curves, Primality Proving And Some Titanic Primes
, 1989
"... We describe how to generate large primes using the primality proving algorithm of Atkin. Figure 1: The Titanic . 1. Introduction. During the last ten years, primality testing evolved at great speed. Motivated by the RSA cryptosystem [3], the first deterministic primality proving algorithm was de ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We describe how to generate large primes using the primality proving algorithm of Atkin. Figure 1: The Titanic . 1. Introduction. During the last ten years, primality testing evolved at great speed. Motivated by the RSA cryptosystem [3], the first deterministic primality proving algorithm was designed by Adleman, Pomerance and Rumely [2] and made practical by Cohen, H. W. Lenstra and A. K. Lenstra (see [9, 10] and more recently [5]). It was then proved that the time needed to test an arbitrary integer N for primality is O((log N) c log log log N ) for some positive constant c ? 0. When implemented on a huge computer, the algorithm was able to test 200 digit numbers in about 10 minutes of CPU time. A few years ago, Goldwasser and Kilian [11], used the theory of elliptic curves over finite fields to give the first primality proving algorithm whose running time is polynomial in log N (assuming a plausible conjecture in number theory). Atkin [4] used the theory of complex multiplicat...
Atkin's test: news from the front
 In Advances in Cryptology
, 1990
"... We make an attempt to compare the speed of eeme primality testing algorithms for certifying loodigit prime numbers. 1. Introduction. The ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We make an attempt to compare the speed of eeme primality testing algorithms for certifying loodigit prime numbers. 1. Introduction. The
DISTRIBUTED PRIMALITY PROVING AND THE PRIMALITY OF (2^3539+ 1)/3
, 1991
"... We explain how the Elliptic Curve Primality Proving algorithm can be implemented in a distributed way. Applications are given to the certification of large primes (more than 500 digits). As a result, we describe the successful attempt at proving the primality of the lO65digit (2^3539+ l)/3, the fir ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We explain how the Elliptic Curve Primality Proving algorithm can be implemented in a distributed way. Applications are given to the certification of large primes (more than 500 digits). As a result, we describe the successful attempt at proving the primality of the lO65digit (2^3539+ l)/3, the first ordinary Titanic prime.