Results 1 
6 of
6
Five axioms of alphaconversion
 Ninth international Conference on Theorem Proving in Higher Order Logics TPHOL
, 1996
"... Abstract. We present five axioms of namecarrying lambdaterms identified up to alphaconversion—that is, up to renaming of bound variables. We assume constructors for constants, variables, application and lambdaabstraction. Other constants represent a function Fv that returns the set of free variab ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We present five axioms of namecarrying lambdaterms identified up to alphaconversion—that is, up to renaming of bound variables. We assume constructors for constants, variables, application and lambdaabstraction. Other constants represent a function Fv that returns the set of free variables in a term and a function that substitutes a term for a variable free in another term. Our axioms are (1) equations relating Fv and each constructor, (2) equations relating substitution and each constructor, (3) alphaconversion itself, (4) unique existence of functions on lambdaterms defined by structural iteration, and (5) construction of lambdaabstractions given certain functions from variables to terms. By building a model from de Bruijn’s nameless lambdaterms, we show that our five axioms are a conservative extension of HOL. Theorems provable from the axioms include distinctness, injectivity and an exhaustion principle for the constructors, principles of structural induction and primitive recursion on lambdaterms, Hindley and Seldin’s substitution lemmas and
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
Combining de Bruijn indices and higherorder abstract syntax in Coq
 Proceedings of TYPES 2006, volume 4502 of Lecture Notes in Computer Science
, 2006
"... Abstract. The use of higherorder abstract syntax is an important approach for the representation of binding constructs in encodings of languages and logics in a logical framework. Formal metareasoning about such object languages is a particular challenge. We present a mechanism for such reasoning, ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
Abstract. The use of higherorder abstract syntax is an important approach for the representation of binding constructs in encodings of languages and logics in a logical framework. Formal metareasoning about such object languages is a particular challenge. We present a mechanism for such reasoning, formalized in Coq, inspired by the Hybrid tool in Isabelle. At the base level, we define a de Bruijn representation of terms with basic operations and a reasoning framework. At a higher level, we can represent languages and reason about them using higherorder syntax. We take advantage of Coq’s constructive logic by formulating many definitions as Coq programs. We illustrate the method on two examples: the untyped lambda calculus and quantified propositional logic. For each language, we can define recursion and induction principles that work directly on the higherorder syntax. 1
Process Algebra in PVS
 Proc. of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS '99), volume 1579 of Lecture Notes in Computer Science
, 1999
"... The aim of this work is to investigate mechanical support for process algebra, both for concrete applications and theoretical properties. Two approaches are presented using the verification system PVS. One approach declares process terms as an uninterpreted type and specifies equality on terms by ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
(Show Context)
The aim of this work is to investigate mechanical support for process algebra, both for concrete applications and theoretical properties. Two approaches are presented using the verification system PVS. One approach declares process terms as an uninterpreted type and specifies equality on terms by axioms. This is convenient for concrete applications where the rewrite mechanisms of PVS can be exploited. For the verification of theoretical results, often induction principles are needed. They are provided by the second approach where process terms are defined as an abstract datatype with a separate equivalence relation. 1 Introduction We investigate the possibilities of obtainingmechanical support for equational reasoning in process algebra. In particular, we consider ACPstyle process algebras [2, 3]. In this framework, processes are represented by terms constructed from atoms (denoting atomic actions) and operators such as choice (nondeterminism), sequential composition, and para...
The Representational Adequacy of HYBRID
"... The Hybrid system (Ambler et al., 2002b), implemented within Isabelle/HOL, allows object logics to be represented using higher order abstract syntax (HOAS), and reasoned about using tactical theorem proving in general and principles of (co)induction in particular. The form of HOAS provided by Hybrid ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The Hybrid system (Ambler et al., 2002b), implemented within Isabelle/HOL, allows object logics to be represented using higher order abstract syntax (HOAS), and reasoned about using tactical theorem proving in general and principles of (co)induction in particular. The form of HOAS provided by Hybrid is essentially a lambda calculus with constants. Of fundamental interest is the form of the lambda abstractions provided by Hybrid. The user has the convenience of writing lambda abstractions using names for the binding variables. However each abstraction is actually a definition of a de Bruijn expression, and Hybrid can unwind the user’s abstractions (written with names) to machine friendly de Bruijn expressions (without names). In this sense the formal system contains a hybrid of named and nameless bound variable notation. In this paper, we present a formal theory in a logical framework which can be viewed as a model of core Hybrid, and state and prove that the model is representationally adequate for HOAS. In particular, it is the canonical translation function from λexpressions to Hybrid that witnesses adequacy. We also prove two results that characterise how Hybrid represents certain classes of λexpressions. The Hybrid system contains a number of different syntactic classes of expression, and associated abstraction mechanisms. Hence this paper also aims to provide a selfcontained theoretical introduction to both the syntax and key ideas of the system; background in automated theorem proving is not essential, although this paper will be of considerable interest to those who wish to work with Hybrid in Isabelle/HOL.
A theorem proving framework for the formal verification of Web Services Composition
"... We present a rigorous framework for the composition of Web Services within a higher order logic theorem prover. Our approach is based on the proofsasprocesses paradigm that enables inference rules of Classical Linear Logic (CLL) to be translated into πcalculus processes. In this setting, composit ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
We present a rigorous framework for the composition of Web Services within a higher order logic theorem prover. Our approach is based on the proofsasprocesses paradigm that enables inference rules of Classical Linear Logic (CLL) to be translated into πcalculus processes. In this setting, composition is achieved by representing available web services as CLL sentences, proving the requested composite service as a conjecture, and then extracting the constructed πcalculus term from the proof. Our framework, implemented in HOL Light, not only uses an expressive logic that allows us to incorporate multiple Web Services properties in the composition process, but also provides guarantees of soundness and correctness for the composition. 1