Results 1 
6 of
6
Geometric SpeedUp Techniques for Finding Shortest Paths in Large Sparse Graphs
, 2003
"... In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. ..."
Abstract

Cited by 53 (14 self)
 Add to MetaCart
In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. We assume that a layout of the graph is given. From this layout, in the preprocessing, we determine for each edge a geometric object containing all nodes that can be reached on a shortest path starting with that edge. Based on these geometric objects, the search space for online computation can be reduced significantly. We present an extensive experimental study comparing the impact of different types of objects. The test data we use are traffic networks, the typical field of application for this scenario.
Highway hierarchies star
 9TH DIMACS IMPLEMENTATION CHALLENGE
, 2006
"... We study two speedup techniques for route planning in road networks: highway hierarchies (HH) and goal directed search using landmarks (ALT). It turns out that there are several interesting synergies. Highway hierarchies yield a way to implement landmark selection more efficiently and to store landm ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
We study two speedup techniques for route planning in road networks: highway hierarchies (HH) and goal directed search using landmarks (ALT). It turns out that there are several interesting synergies. Highway hierarchies yield a way to implement landmark selection more efficiently and to store landmark information more space efficiently than before. ALT gives queries in highway hierarchies an excellent sense of direction and allows some pruning of the search space. For computing shortest distances and approximately shortest travel times, this combination yields a significant speedup over HH alone. We also explain how to compute actual shortest paths very efficiently.
Landmarkbased routing in dynamic graphs
 IN: 6TH WORKSHOP ON EXPERIMENTAL ALGORITHMS
, 2007
"... Many speedup techniques for route planning in static graphs exist, only few of them are proven to work in a dynamic scenario. Most of them use preprocessed information, which has to be updated whenever the graph is changed. However, goal directed search based on landmarks (ALT) still performs cor ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Many speedup techniques for route planning in static graphs exist, only few of them are proven to work in a dynamic scenario. Most of them use preprocessed information, which has to be updated whenever the graph is changed. However, goal directed search based on landmarks (ALT) still performs correct queries as long as an edge weight does not drop below its initial value. In this work, we evaluate the robustness of ALT with respect to traffic jams. It turns out that—by increasing the efficiency of ALT—we are able to perform fast (down to 20 ms on the Western European network) random queries in a dynamic scenario without updating the preprocessing as long as the changes in the network are moderate. Furthermore, we present how to update the preprocessed data without any additional space consumption and how to adapt the ALT algorithm to a timedependent scenario. A timedependent scenario models predictable changes in the network, e.g. traffic jams due to rush hour.
SpeedUp Techniques for ShortestPath Computations
 IN PROCEEDINGS OF THE 24TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS’07
, 2007
"... During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can be used to prune or guide the search. Timetable information in public transport is a traditional application domain for such techniques. In this paper, we provide a condensed overview of new developments and extensions of classic results. Furthermore, we discuss how combinations of speedup techniques can be realized to take advantage from different strategies.
For more information about Current Contents on Diskette”’, telephone tollfree 8003364474. Outside the US and Canada, call 2153860100, ext. 1483, or contact the nearest ISI@ representative listed on the inside front cover of thk issue of Current Conte
 Proceedings of TACAS’98
, 1998
"... Proceedings ..."
Generating node coordinates for shortestpath computations in transportation networks
 ACM Journal on Experimental Algorithmics
"... Speedup techniques that exploit given node coordinates have proven useful for shortestpath computations in transportation networks and geographic information systems. To facilitate the use of such techniques when coordinates are missing from some, or even all, of the nodes in a network we generate ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Speedup techniques that exploit given node coordinates have proven useful for shortestpath computations in transportation networks and geographic information systems. To facilitate the use of such techniques when coordinates are missing from some, or even all, of the nodes in a network we generate artificial coordinates using methods from graph drawing. Experiments on a large set of German train timetables indicate that the speedup achieved with coordinates from our drawings is close to that achieved with the true coordinates—and in some special cases even better.