Results 1 
2 of
2
Universes for Generic Programs and Proofs in Dependent Type Theory
 Nordic Journal of Computing
, 2003
"... We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introductio ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introduction, elimination, and equality rules. These extensions are modeled on Dybjer and Setzer's finitely axiomatized theories of inductiverecursive definitions, which also have a universe of codes for sets, and generic formation, introduction, elimination, and equality rules.
Proof theory of MartinLöf type theory. An overview
 MATHEMATIQUES ET SCIENCES HUMAINES, 42 ANNÉE, N O 165:59 – 99
, 2004
"... We give an overview over the historic development of proof theory and the main techniques used in ordinal theoretic proof theory. We argue, that in a revised Hilbert’s programme, ordinal theoretic proof theory has to be supplemented by a second step, namely the development of strong equiconsistent ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We give an overview over the historic development of proof theory and the main techniques used in ordinal theoretic proof theory. We argue, that in a revised Hilbert’s programme, ordinal theoretic proof theory has to be supplemented by a second step, namely the development of strong equiconsistent constructive theories. Then we show, how, as part of such a programme, the proof theoretic analysis of MartinLöf type theory with Wtype and one microscopic universe containing only two finite sets in carried out. Then we look at the analysis MartinLöf theory with Wtype and a universe closed under the Wtype, and consider the extension of type theory by one Mahlo universe and its prooftheoretic analysis. Finally we repeat the concept of inductiverecursive definitions, which extends the notion of inductive definitions substantially. We introduce a closed formalisation, which can be used in generic programming, and explain, what is known about its strength.