Results 1 - 10
of
88
The neural correlates of maternal and romantic love
- Neuroimage
, 2004
"... Romantic and maternal love are highly rewarding experiences. Both are linked to the perpetuation of the species and therefore have a closely linked biological function of crucial evolutionary importance. Yet almost nothing is known about their neural correlates in the human. We therefore used fMRI t ..."
Abstract
-
Cited by 95 (1 self)
- Add to MetaCart
(Show Context)
Romantic and maternal love are highly rewarding experiences. Both are linked to the perpetuation of the species and therefore have a closely linked biological function of crucial evolutionary importance. Yet almost nothing is known about their neural correlates in the human. We therefore used fMRI to measure brain activity in mothers while they viewed pictures of their own and of acquainted children, and of their best friend and of acquainted adults as additional controls. The activity specific to maternal attachment was compared to that associated to romantic love described in our earlier study and to the distribution of attachment-mediating neurohormones established by other studies. Both types of attachment activated regions specific to each, as well as overlapping regions in the brain’s reward system that coincide with areas rich in oxytocin and vasopressin receptors. Both deactivated a common set of regions associated with negative emotions, social judgment and ‘mentalizing’, that is, the assessment of other people’s intentions and emotions. We conclude that human attachment employs a push–pull mechanism that overcomes social distance by deactivating networks used for critical social assessment and negative emotions, while it bonds individuals through the involvement of the reward circuitry, explaining the power of love to motivate and exhilarate.
What"-Then-"Where" in visual working memory: an event-related fMRI study
- Journal of Cognitive Neuroscience
, 1999
"... Behavioral studies indicate that spatial and object working memory are computed by dissociable subsystems. We investi-gated the neural bases of this dissociation with a whole-brain fMRI design and analysis technique that permitted direct as-sessment of delay-period activity, uncontaminated by other ..."
Abstract
-
Cited by 49 (4 self)
- Add to MetaCart
(Show Context)
Behavioral studies indicate that spatial and object working memory are computed by dissociable subsystems. We investi-gated the neural bases of this dissociation with a whole-brain fMRI design and analysis technique that permitted direct as-sessment of delay-period activity, uncontaminated by other components of the trial. The task employed a “what”-then-“where ” design, with an object and a spatial delay period incorporated in each trial; within-trial order of delay conditions was balanced across each scan. Our experiment failed to ªnd evidence, at the single-subject level and at the group level, for anatomical segregation of spatial and object working memory function in the frontal cortex. Delay-period activity in the caudate nucleus revealed a sensitivity to position in the trial in the spatial, but not the object, condition. In posterior regions, spatial delay-period activity was associated with preferential recruitment of extrastriate areas falling within Brodmann’s area 19 and, less reliably, the superior parietal lobule. Object-speciªc delay-period activity was found predominantly in ventral re-gions of the posterior cortex and demonstrated more topo-graphic variability across subjects than did spatial working memory activity.
Brain areas specific for attentional load in a motion-tracking task
- Journal of Cognitive Neuroscience
, 2001
"... INTRODUCTION: The aim of this study was to investigate the neural basis for attentional load effects in humans. Although recent neuroimaging studies (1,2,3) suggest the involvement of parietal cortex, MT/V5 complex and prefrontal cortex in the regulation of visual attention of ..."
Abstract
-
Cited by 45 (4 self)
- Add to MetaCart
(Show Context)
INTRODUCTION: The aim of this study was to investigate the neural basis for attentional load effects in humans. Although recent neuroimaging studies (1,2,3) suggest the involvement of parietal cortex, MT/V5 complex and prefrontal cortex in the regulation of visual attention of
Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations
- Journal of Cognitive Neuroscience
, 2003
"... & Several functional neuroimaging studies have compared words and pseudowords to test different cognitive models of reading. There are difficulties with this approach, however, because cognitive models do not make clear-cut predictions at the neural level. Therefore, results can only be interpre ..."
Abstract
-
Cited by 40 (1 self)
- Add to MetaCart
(Show Context)
& Several functional neuroimaging studies have compared words and pseudowords to test different cognitive models of reading. There are difficulties with this approach, however, because cognitive models do not make clear-cut predictions at the neural level. Therefore, results can only be interpreted on the basis of prior knowledge of cognitive anatomy. Furthermore, studies comparing words and pseudowords have produced inconsistent results. The inconsistencies could reflect false-positive results due to the low statistical thresholds applied or confounds from nonlexical aspects of the stimuli. Alternatively, they may reflect true effects that are inconsistent across subjects; dependent on experimental parameters such as stimulus rate or duration; or not replicated across studies because of insufficient statistical power. In this fMRI study, we investigate consistent and inconsistent differences between word and pseudoword reading in 20 subjects, and distinguish between effects associated with increases and decreases in activity relative to fixation. In addition, the interaction of word type with stimulus duration is explored. We find that words and pseudowords activate the same set of regions relative to fixation, and within this system, there is greater activation for pseudowords than words in the left frontal operculum, left posterior inferior temporal gyrus, and the right cerebellum. The only effects of words relative to pseudowords consistent over subjects are due to decreases in activity for pseudowords relative to fixation; and there are no significant interactions between word type and stimulus duration. Finally, we observe inconsistent but highly significant effects of word type at the individual subject level. These results (i) illustrate that pseudowords place increased demands on areas that have previously been linked to lexical retrieval, and (ii) highlight the importance of including one or more baselines to qualify word type effects. Furthermore, (iii) they suggest that inconsistencies observed in the previous literature may result from effects arising from a small number of subjects only. &
Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials
- NeuroImage
"... A strong correspondence has been repeatedly observed between actually performed and mentally imagined object rotation. This suggests an overlap in the brain regions involved in these processes. Functional neuroimaging studies have consistently revealed parietal and occipital cortex activity during d ..."
Abstract
-
Cited by 35 (5 self)
- Add to MetaCart
(Show Context)
A strong correspondence has been repeatedly observed between actually performed and mentally imagined object rotation. This suggests an overlap in the brain regions involved in these processes. Functional neuroimaging studies have consistently revealed parietal and occipital cortex activity during dynamic visuospatial imagery. However, results concerning the involvement of higher-order cortical motor areas have been less consistent. We investigated if and when premotor structures are active during processing of a three-dimensional cube comparison task that requires dynamic visuospatial imagery. In order to achieve a good temporal and spatial resolution, single-trial functional magnetic resonance imaging (fMRI) and scalp-recorded event-related slow cortical potentials (SCPs) were recorded from the same subjects in two separate measurement sessions. In order to reduce inter-subject variability in brain activity due to individual differences, only male subjects (n � 13) with high task-specific ability were investigated. Functional MRI revealed consistent bilateral activity in the occipital (Brodmann area BA18/19) and parietal cortex (BA7), in lateral and medial premotor areas (BA6), the dorsolateral prefrontal cortex (BA9), and the anterior insular cortex. The time-course of SCPs indicated that task-related activity in these areas commenced approximately 550–650 ms after stimulus presentation and persisted until task completion. These results provide strong and consistent evidence that the human premotor cortex is involved in dynamic visuospatial imagery. © 2001 Academic Press
Subliminal convergence of Kanji and Kana words: further evidence for functional parcellation of the posterior temporal cortex in visual word perception
- J. Cogn. Neurosci
, 2005
"... & Recent evidence has suggested that the human occipitotemporal region comprises several subregions, each sensitive to a distinct processing level of visual words. To further explore the functional architecture of visual word recognition, we employed a subliminal priming method with functional m ..."
Abstract
-
Cited by 34 (6 self)
- Add to MetaCart
(Show Context)
& Recent evidence has suggested that the human occipitotemporal region comprises several subregions, each sensitive to a distinct processing level of visual words. To further explore the functional architecture of visual word recognition, we employed a subliminal priming method with functional magnetic resonance imaging (fMRI) during semantic judgments of words presented in two different Japanese scripts, Kanji and Kana. Each target word was preceded by a subliminal presentation of either the same or a different word, and in the same or a different script. Behaviorally, word repetition produced significant priming regardless of whether the words were presented in the same or different script. At the neural level, this cross-script priming was associated with repetition suppression in the left inferior temporal cortex
An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory
- NeuroImage
, 2000
"... The experiments presented in this report were designed to test the hypothesis that visual working memory for spatial stimuli and for object stimuli recruits separate neuronal networks in prefrontal cortex. We acquired BOLD fMRI data from subjects while they compared each serially presented stimulus ..."
Abstract
-
Cited by 31 (3 self)
- Add to MetaCart
(Show Context)
The experiments presented in this report were designed to test the hypothesis that visual working memory for spatial stimuli and for object stimuli recruits separate neuronal networks in prefrontal cortex. We acquired BOLD fMRI data from subjects while they compared each serially presented stimulus to the one that had appeared two or three stimuli previously. Three experiments failed to reject the null hypothesis that prefrontal cortical activity associated with spatial working memory performance cannot be dissociated from prefrontal cortical activity associated with nonspatial working memory performance. Polymodal regions of parietal cortex (inferior and superior parietal lobules), as well as cortex surrounding the superior frontal sulcus (and encompassing the frontal eye fields), also demonstrated equivalent levels of activation in the spatial and object conditions. Posterior cortical regions associated with the ventral visual processing stream (portions of lingual, fusiform, and inferior temporal gyri), however, demonstrated greater object than spatial working memory-related activity, particularly when stimuli varied only along spatial or featural dimensions. These experiments, representing fMRI studies of spatial and object working memory in which the testing procedure and the stimuli were identical in the two conditions, suggest that domainspecific visual working memory processing may be mediated by posterior regions associated with domain-specific sensory processing. © 2000 Academic Press
Neural Substrates of Response-Based Sequence Learning Using fMRI
"... & Representation of sequential structure can occur with respect to the order of perceptual events or the order in which actions are linked. Neural correlates of sequence retrieval associated with the order of motor responses were identified in a variant of the serial reaction time task in which ..."
Abstract
-
Cited by 28 (4 self)
- Add to MetaCart
(Show Context)
& Representation of sequential structure can occur with respect to the order of perceptual events or the order in which actions are linked. Neural correlates of sequence retrieval associated with the order of motor responses were identified in a variant of the serial reaction time task in which training occurred with a spatially incompatible mapping between stimuli and finger responses. After transfer to a spatially compatible version of the task, performance enhancements indicative of learning were only present in subjects required to make finger movements in the same order used during training. In contrast, a second group of subjects performed the compatible task using an identical sequence of stimuli (and different order of finger movements) as in training. They demonstrated no performance benefit, indicating that learning was response based. Analysis was restricted to subjects demonstrating low recall of the sequence structure to rule out effects of explicit awareness. The interaction of group (motor vs. perceptual transfer) with sequence retrieval (sequencing vs. rest) revealed significantly greater activation in the bilateral supplementary motor area, cingulate motor area, ventral premotor cortex, left caudate and inferior parietal lobule for subjects in the motor group (illustrating successful sequence retrieval at the response level). Retrieval of sequential responses occurs within mesial motor areas and related motor planning areas. &
Human striatal activation reflects degree of stimulus saliency
- Neuroimage
, 2006
"... Salient stimuli are characterized by their capability to perturb and seize available cognitive resources. Although the striatum and its dopaminergic inputs respond to a variety of stimuli categorically defined as salient, including rewards, the relationship between striatal activity and saliency is ..."
Abstract
-
Cited by 24 (3 self)
- Add to MetaCart
Salient stimuli are characterized by their capability to perturb and seize available cognitive resources. Although the striatum and its dopaminergic inputs respond to a variety of stimuli categorically defined as salient, including rewards, the relationship between striatal activity and saliency is not well understood. Specifically, it is unclear if the striatum responds in an all-or-none fashion to salient events or instead responds in a graded fashion to the degree of saliency associated with an event. Using functional magnetic resonance imaging, we measured activity in the brains of 20 participants performing a visual classification task in which they identified single digits as odd or even numbers. An auditory tone preceded each number, which was occasionally, and unexpectedly, substituted by a novel sound. The novel sounds varied in their ability to interrupt and reallocate cognitive resources (i.e., their saliency) as measured by a delay in reaction time to immediately subsequent numerical task-stimuli. The present findings demonstrate that striatal activity increases proportionally to the degree to which an unexpected novel sound interferes with the current cognitive focus, even in the absence of reward. These results suggest that activity in the human striatum reflects the level of saliency associated with a stimulus, perhaps providing a signal to reallocate limited resources to important events. D 2005 Elsevier Inc. All rights reserved.
Multiple movement representations in the human brain: an event-related fMRI study
- J. Cogn. Neurosci
, 2002
"... & Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/ or response execution and areas specifically involved in respon ..."
Abstract
-
Cited by 21 (5 self)
- Add to MetaCart
(Show Context)
& Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/ or response execution and areas specifically involved in response preparation. The specific contribution of parietal and frontal areas to motor preparation has been explored in electrophysiological studies in monkey. However, the asso-ciative nature of sensorimotor tasks calls for the additional contributions of other cortical regions. In this article, we have investigated the functional anatomy of movement represen-tations in the context of an associative visuomotor task with instructed delays. Neural correlates of movement representa-tions have been assessed by isolating preparatory activity that