Results 1  10
of
44
Separating microstructure noise from volatility
, 2006
"... There are two variance components embedded in the returns constructed using high frequency asset prices: the timevarying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moment ..."
Abstract

Cited by 64 (5 self)
 Add to MetaCart
There are two variance components embedded in the returns constructed using high frequency asset prices: the timevarying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatilitytiming trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.
Ultra high frequency volatility estimation with dependent microstructure noise
"... We analyze the impact of time series dependence in market microstructure noise on the properties of estimators of the integrated volatility of an asset price based on data sampled at frequencies high enough for that noise to be a dominant consideration. We show that combining two time scales for tha ..."
Abstract

Cited by 56 (10 self)
 Add to MetaCart
We analyze the impact of time series dependence in market microstructure noise on the properties of estimators of the integrated volatility of an asset price based on data sampled at frequencies high enough for that noise to be a dominant consideration. We show that combining two time scales for that purpose will work even when the noise exhibits time series dependence, analyze in that context a refinement of this approach based on multiple time scales, and compare empirically our different estimators to the standard realized volatility.
Variation, jumps, market frictions and high frequency data in financial econometrics
, 2005
"... ..."
Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
, 2003
"... A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from highfrequency returns coupled with relatively simple reduced form time series modeling procedures. Building on recent th ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from highfrequency returns coupled with relatively simple reduced form time series modeling procedures. Building on recent theoretical results from BarndorffNielsen and Shephard (2003c) for related bipower variation measures involving the sum of highfrequency absolute returns, the present paper provides a practical framework for nonparametrically measuring the jump component in the realized volatility measurements. Exploiting these ideas for a decade of highfrequency fiveminute returns for the DM/ $ exchange rate, the S&P500 aggregate market index, and the 30year U.S. Treasury Bond, we find the jump components to be distinctly less persistent than the contribution to the overall return variability originating from the continuous sample path component of the price process. Explicitly including the jump measure as an additional explanatory variable in an easytoimplement reduced form model for the realized volatilities results in highly significant jump coefficient estimates at the daily, weekly and quarterly forecasts horizons. As such, our results hold promise for improved financial asset allocation, risk management, and derivatives pricing, by separate modeling, forecasting and pricing of the continuous and jump components of the total return variability.
A DiscreteTime Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects
, 2007
"... We develop an empirically highly accurate discretetime daily stochastic volatility model that explicitly distinguishes between the jump and continuoustime components of price movements using nonparametric realized variation and Bipower variation measures constructed from highfrequency intraday dat ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
We develop an empirically highly accurate discretetime daily stochastic volatility model that explicitly distinguishes between the jump and continuoustime components of price movements using nonparametric realized variation and Bipower variation measures constructed from highfrequency intraday data. The model setup allows us to directly assess the structural interdependencies among the shocks to returns and the two different volatility components. The model estimates suggest that the leverage effect, or asymmetry between returns and volatility, works primarily through the continuous volatility component. The excellent fit of the model makes it an ideal candidate for an easytoimplement auxiliary model in the context of indirect estimation of empirically more realistic continuoustime jump diffusion and Lévydriven stochastic volatility models, effectively incorporating the interdaily dependencies inherent in the highfrequency intraday data.
BOOTSTRAPPING REALIZED VOLATILITY
 SUBMITTED TO ECONOMETRICA
"... We propose bootstrap methods for a general class of nonlinear transformations of realized volatility which includes the raw version of realized volatility and its logarithmic transformation as special cases. We consider the i.i.d. bootstrap and the wild bootstrap (WB) and prove their firstorder asy ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
We propose bootstrap methods for a general class of nonlinear transformations of realized volatility which includes the raw version of realized volatility and its logarithmic transformation as special cases. We consider the i.i.d. bootstrap and the wild bootstrap (WB) and prove their firstorder asymptotic validity under general assumptions on the logprice process that allow for drift and leverage effects. We derive Edgeworth expansions in a simpler model that rules out these effects. The i.i.d. bootstrap provides a secondorder asymptotic refinement when volatility is constant, but not otherwise. The WB yields a secondorder asymptotic refinement under stochastic volatility provided we choose the external random variable used to construct the WB data appropriately. None of these methods provide thirdorder asymptotic refinements. Both methods improve upon the firstorder asymptotic theory in finite samples.
Edgeworth expansions for realized volatility and related estimators
, 2005
"... This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such estimators. The expansions are developed in the framework of smallnoise asymptotics. The results ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such estimators. The expansions are developed in the framework of smallnoise asymptotics. The results have application to CornishFisher inversion and help setting intervals more accurately than those relying on normal distribution.
Stochastic Volatility
, 2005
"... Stochastic volatility (SV) is the main concept used in the fields of financial economics and mathematical finance to deal with the endemic timevarying volatility and codependence found in financial markets. Such dependence has been known for a long time, early comments include Mandelbrot (1963) and ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Stochastic volatility (SV) is the main concept used in the fields of financial economics and mathematical finance to deal with the endemic timevarying volatility and codependence found in financial markets. Such dependence has been known for a long time, early comments include Mandelbrot (1963) and Officer (1973). It was also clear to the founding fathers of modern continuous time finance that homogeneity was an unrealistic if convenient simplification, e.g. Black and Scholes (1972, p. 416) wrote “... there is evidence of nonstationarity in the variance. More work must be done to predict variances using the information available. ” Heterogeneity has deep implications for the theory and practice of financial economics and econometrics. In particular, asset pricing theory is dominated by the idea that higher rewards may be expected when we face higher risks, but these risks change through time in complicated ways. Some of the changes in the level of risk can be modelled stochastically, where the level of volatility and degree of codependence between assets is allowed to change over time. Such models allow us to explain, for example, empirically observed departures from BlackScholesMerton prices for options and understand why we should expect to see occasional dramatic moves in financial markets. The outline of this article is as follows. In section 2 I will trace the origins of SV and provide links with the basic models used today in the literature. In section 3 I will briefly discuss some of the innovations in the second generation of SV models. In section 4 I will briefly discuss the literature on conducting inference for SV models. In section 5 I will talk about the use of SV to price options. In section 6 I will consider the connection of SV with realised volatility. A extensive reviews of this literature is given in Shephard (2005). 2 The origin of SV models The origins of SV are messy, I will give five accounts, which attribute the subject to different sets of people.
Are Volatility Estimators Robust with Respect to Modeling Assumptions
 Bernoulli
, 2007
"... We consider microstructure as an arbitrary contamination of the underlying latent securities price, through a Markov kernel Q. Special cases include additive error, rounding and combinations thereof. Our main result is that, subject to smoothness conditions, the two scales realized volatility is rob ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We consider microstructure as an arbitrary contamination of the underlying latent securities price, through a Markov kernel Q. Special cases include additive error, rounding and combinations thereof. Our main result is that, subject to smoothness conditions, the two scales realized volatility is robust to the form of contamination Q. To push the limits of our result, we show what happens for some models that involve rounding (which is not, of course, smooth) and see in this situation how the robustness deteriorates with decreasing smoothness. Our conclusion is that under reasonable smoothness, one does not need to consider too closely how the microstructure is formed, while if severe nonsmoothness is suspected, one needs to pay attention to the precise structure and also the use to which the estimator of volatility will be put.