Results 1  10
of
189
Compressed sensing
 IEEE Trans. Inf. Theory
, 2006
"... We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal numbe ..."
Abstract

Cited by 3614 (24 self)
 Add to MetaCart
(Show Context)
We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal number of pixels, and yet be accurately reconstructed. The samples are nonadaptive and measure ‘random ’ linear combinations of the transform coefficients. Approximate reconstruction is obtained by solving for the transform coefficients consistent with measured data and having the smallest possible `1 norm. We perform a series of numerical experiments which validate in general terms the basic idea proposed in [14, 3, 5], in the favorable case where the transform coefficients are sparse in the strong sense that the vast majority are zero. We then consider a range of lessfavorable cases, in which the object has all coefficients nonzero, but the coefficients obey an `p bound, for some p ∈ (0, 1]. These experiments show that the basic inequalities behind the CS method seem to involve reasonable constants. We next consider synthetic examples modelling problems in spectroscopy and image pro
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1521 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1435 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 397 (33 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
On the mathematical foundations of learning
 Bulletin of the American Mathematical Society
, 2002
"... The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton ..."
Abstract

Cited by 329 (12 self)
 Add to MetaCart
The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton
The Partition of Unity Method
 International Journal of Numerical Methods in Engineering
, 1996
"... A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partitionofu ..."
Abstract

Cited by 206 (2 self)
 Add to MetaCart
(Show Context)
A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partitionofunity method is that finite element spaces of any desired regularity can be constructed very easily. This paper includes a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation for high wave numbers. The basic estimates for aposteriori error estimation for this new method are also proved. Key words: Finite element method, meshless finite element method, finite element methods for highly oscillatory solutions TICAM, The University of Texas at Austin, Austin, TX 78712. Research was partially supported by US Office of Naval Research under grant N0001490J1030 y Seminar for Applied Mathematics, ETH Zurich, CH8092 Zurich, Switzerland....
A Factorization Approach to Grouping
 in European Conference on Computer Vision
, 1998
"... The foreground group in a scene may be `discovered' and computed as a factorized approximation to the pairwise affinity of the elements in the scene. A pointwise approximation of the pairwise affinity information may in fact be interpreted as a `saliency' index, and the foreground of t ..."
Abstract

Cited by 173 (0 self)
 Add to MetaCart
(Show Context)
The foreground group in a scene may be `discovered' and computed as a factorized approximation to the pairwise affinity of the elements in the scene. A pointwise approximation of the pairwise affinity information may in fact be interpreted as a `saliency' index, and the foreground of the scene may be obtained by thresholding it. An algorithm called `affinity factorization' is thus obtained which may be used for grouping.
Deformable Kernels for Early Vision
 IEEE Trans. Pattern Anal. Mach. Intell
, 1995
"... AbstractEarly vision algorithms often have a first stage of linearfiltering that ‘extracts ’ from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsel ..."
Abstract

Cited by 145 (11 self)
 Add to MetaCart
AbstractEarly vision algorithms often have a first stage of linearfiltering that ‘extracts ’ from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsely the space of scales and orientations in order to reduce computation and storage costs. This discretization produces anisotropies due to a loss of translation, rotation, and scalinginvariance that makes early vision algorithms less precise and more difficult to design. This need not be so: one can compute and store efficiently the response of families of linear filters defined on a continuum of orientations and scales. A technique is presented that allows 1) computing the best approximation of a given family using linear combinations of a small number of ‘basis ’ functions; 2) describing all finitedimensional families, i.e., the families of filters for which a finite dimensional representation is possible with no error. The technique is based on singular value decomposition and may be applied to generating filters in arbitrary dimensions and subject to arbitrary deformations; the relevant functional analysis results are reviewed and precise conditions for the decomposition to be feasible are stated. Experimental results are presented that demonstrate the applicability of the technique to generating multiorientation multiscale 2D edgedetection kernels. The implementation issues are also discussed. Index TermsSteerable filters, wavelets, early vision, multiresolution image analysis, multirate filtering, deformable filters, scalespace I.
Sickel: Optimal approximation of elliptic problems by linear and nonlinear mappings III
 Triebel, Function Spaces, Entropy Numbers, Differential Operators
, 1996
"... We study the optimal approximation of the solution of an operator equation A(u) = f by four types of mappings: a) linear mappings of rank n; b) nterm approximation with respect to a Riesz basis; c) approximation based on linear information about the right hand side f; d) continuous mappings. We co ..."
Abstract

Cited by 134 (28 self)
 Add to MetaCart
(Show Context)
We study the optimal approximation of the solution of an operator equation A(u) = f by four types of mappings: a) linear mappings of rank n; b) nterm approximation with respect to a Riesz basis; c) approximation based on linear information about the right hand side f; d) continuous mappings. We consider worst case errors, where f is an element of the unit ball of a Sobolev or Besov space Br q(Lp(Ω)) and Ω ⊂ Rd is a bounded Lipschitz domain; the error is always measured in the Hsnorm. The respective widths are the linear widths (or approximation numbers), the nonlinear widths, the Gelfand widths, and the manifold widths. As a technical tool, we also study the Bernstein numbers. Our main results are the following. If p ≥ 2 then the order of convergence is the same for all four classes of approximations. In particular, the best linear approximations are of the same order as the best nonlinear ones. The best linear approximation can be quite difficult to realize as a numerical algorithm since the optimal Galerkin space usually depends on the operator and of the shape of the domain Ω. For p < 2 there is a difference, nonlinear approximations are better than linear ones. However, in this case, it turns out that linear information about the right hand side f is again optimal. Our main theoretical tool is the best nterm approximation with respect to an optimal Riesz basis and related nonlinear widths. These general results are used to study the Poisson equation in a polygonal domain. It turns out that best nterm wavelet approximation is (almost) optimal. The main results of
A chronology of interpolation: From ancient astronomy to modern signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently used in signal and image processing into histo ..."
Abstract

Cited by 102 (0 self)
 Add to MetaCart
(Show Context)
This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently used in signal and image processing into historical perspective. A summary of the insights and recommendations that follow from relatively recent theoretical as well as experimental studies concludes the presentation. Keywords—Approximation, convolutionbased interpolation, history, image processing, polynomial interpolation, signal processing, splines. “It is an extremely useful thing to have knowledge of the true origins of memorable discoveries, especially those that have been found not by accident but by dint of meditation. It is not so much that thereby history may attribute to each man his own discoveries and others should be encouraged to earn like commendation, as that the art of making discoveries should be extended by considering noteworthy examples of it. ” 1 I.