Results 1  10
of
29
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification
"... ..."
Optimality measures for performance profiles
 Preprint ANL/MCSP11550504, Mathematics and Computer Science Division, Argonne National Lab
, 2004
"... We examine the influence of optimality measures on the benchmarking process, and show that scaling requirements lead to a convergence test for nonlinearly constrained solvers that uses a mixture of absolute and relative error measures. We show that this convergence test is well behaved at any point ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
We examine the influence of optimality measures on the benchmarking process, and show that scaling requirements lead to a convergence test for nonlinearly constrained solvers that uses a mixture of absolute and relative error measures. We show that this convergence test is well behaved at any point where the constraints satisfy the MangasarianFromovitz constraint qualification and also avoids the explicit use of a complementarity measure. Our computational experiments explore the impact of this convergence test on the benchmarking process with performance profiles. 1
LOCAL CONVERGENCE OF EXACT AND INEXACT AUGMENTED LAGRANGIAN METHODS UNDER THE SECONDORDER SUFFICIENT OPTIMALITY CONDITION
, 2012
"... We establish local convergence and rate of convergence of the classical augmented Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier satisfying the secondorder sufficient optimality condition. In particular, no constraint qualifications of any kind ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
We establish local convergence and rate of convergence of the classical augmented Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier satisfying the secondorder sufficient optimality condition. In particular, no constraint qualifications of any kind are needed. Previous literature on the subject required, in addition, the linear independence constraint qualification and either the strict complementarity assumption or a stronger version of the secondorder sufficient condition. That said, the classical results allow the initial multiplier estimate to be far from the optimal one, at the expense of proportionally increasing the threshold value for the penalty parameters. Although our primary goal is to avoid constraint qualifications, if the stronger assumptions are introduced, then starting points far from the optimal multiplier are allowed within our analysis as well. Using only the secondorder sufficient optimality condition, for penalty parameters large enough we prove primaldual Qlinear convergence rate, which becomes superlinear if the parameters are allowed to go to infinity. Both exact and inexact solutions of subproblems are considered. In the exact case, we further show that the primal convergence rate is of the same Qorder as the primaldual rate. Previous assertions for the primal sequence all had to do with the weaker Rrate of convergence and required the stronger assumptions cited above. Finally, we show that under our assumptions one of the popular rules of controlling the penalty parameters ensures their boundedness.
On the Boundedness of Penalty Parameters in an Augmented Lagrangian Method with Constrained Subproblems
, 2011
"... Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When t ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness of this approach is associated with boundedness of penalty parameters. In this paper it is proved that, under more natural assumptions than the ones up to now employed, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Partial Spectral Projected Gradient Method with ActiveSet Strategy for Linearly Constrained Optimization
, 2009
"... A method for linearly constrained optimization which modifies and generalizes recent boxconstraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted t ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
A method for linearly constrained optimization which modifies and generalizes recent boxconstraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithms. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango
New and improved results for packing identical unitary radius circles within triangles, rectangles and strips
, 2009
"... ..."
Improving ultimate convergence of an Augmented Lagrangian method
, 2007
"... Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptoticall ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptotically faster. In the present research a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its “pure” counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the Interior Point method is replaced by the Newtonian resolution of a KKT system identified by the Augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:
Proximal Methods for Nonlinear Programming: Double Regularization and Inexact Subproblems
, 2008
"... ..."
LOCAL CONVERGENCE OF AN AUGMENTED LAGRANGIAN METHOD FOR MATRIX INEQUALITY CONSTRAINED PROGRAMMING
"... Abstract. We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient secondorder nogap optimality condition ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient secondorder nogap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to drive the penalty parameter to 0. Key words: Matrix inequality, nonlinear semidefinite programming, augmented Lagrangian, spectral penalty, implicit function theorem. 1. Introduction. We