Results 1  10
of
255
A new fast and efficient image codec based on set partitioning in hierarchical trees
 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
, 1996
"... Embedded zerotree wavelet (EZW) coding,introduced by J. M. Shapiro, is a very effective and computationally simple technique for image compression. Here we offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. ..."
Abstract

Cited by 877 (45 self)
 Add to MetaCart
Embedded zerotree wavelet (EZW) coding,introduced by J. M. Shapiro, is a very effective and computationally simple technique for image compression. Here we offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of selfsimilarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation, based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previosly reported extension of the EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by arithmetic code.
Quantization
 IEEE TRANS. INFORM. THEORY
, 1998
"... The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modula ..."
Abstract

Cited by 639 (11 self)
 Add to MetaCart
The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modulation systems, especially in the 1948 paper of Oliver, Pierce, and Shannon. Also in 1948, Bennett published the first highresolution analysis of quantization and an exact analysis of quantization noise for Gaussian processes, and Shannon published the beginnings of rate distortion theory, which would provide a theory for quantization as analogtodigital conversion and as data compression. Beginning with these three papers of fifty years ago, we trace the history of quantization from its origins through this decade, and we survey the fundamentals of the theory and many of the popular and promising techniques for quantization.
Multiresolution Analysis for Surfaces Of Arbitrary . . .
, 1993
"... Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our k ..."
Abstract

Cited by 336 (3 self)
 Add to MetaCart
Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our knowledge it has not been extended to functions defined on surfaces of arbitrary genus. In this
Fast Multiresolution Image Querying
, 1995
"... We present a method for searching in an image database using a query image that is similar to the intended target. The query image may be a handdrawn sketch or a (potentially lowquality) scan of the image to be retrieved. Our searching algorithm makes use of multiresolution wavelet decompositions ..."
Abstract

Cited by 269 (4 self)
 Add to MetaCart
We present a method for searching in an image database using a query image that is similar to the intended target. The query image may be a handdrawn sketch or a (potentially lowquality) scan of the image to be retrieved. Our searching algorithm makes use of multiresolution wavelet decompositions of the query and database images. The coefficients of these decompositions are distilled into small "signatures" for each image. We introduce an "image querying metric" that operates on these signatures. This metric essentially compares how many significant wavelet coefficients the query has in common with potential targets. The metric includes parameters that can be tuned, using a statistical analysis, to accommodate the kinds of image distortions found in different types of image queries. The resulting algorithm is simple, requires very little storage overhead for the database of signatures, and is fast enough to be performed on a database of 20,000 images at interactive rates (on standard...
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal through Wavelet Shrinkage
 IEEE Trans. Image Processing
, 1996
"... This paper examines the relationship between waveletbased image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following pro ..."
Abstract

Cited by 193 (11 self)
 Add to MetaCart
This paper examines the relationship between waveletbased image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following problem: given an image F defined on a square I, minimize over all g in the Besov space B 1 1 (L1 (I)) the functional #F  g# 2 L 2 (I) + ##g# B 1 1 (L 1 (I)) .Weusethetheoryof nonlinear wavelet image compression in L2 (I) to derive accurate error bounds for noise removal through wavelet shrinkage applied to images corrupted with i.i.d., mean zero, Gaussian noise. A new signaltonoise ratio, which we claim more accurately reflects the visual perception of noise in images, arises in this derivation. We present extensive computations that support the hypothesis that nearoptimal shrinkage parameters can be derived if one knows (or can estimate) only two parameters about an image F:thelarge...
Analysis Of Multiresolution Image Denoising Schemes Using GeneralizedGaussian Priors
 IEEE TRANS. INFO. THEORY
, 1998
"... In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to ..."
Abstract

Cited by 177 (9 self)
 Add to MetaCart
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to show a simple relationship between differentiability of the logprior at zero and the sparsity of the estimates, as well as an equivalence between universal thresholding schemes and Bayesian estimation using a certain Generalized Gaussian prior.
Multiresolution Curves
, 1994
"... We describe a multiresolution curve representation, based on wavelets, that conveniently supports a variety of operations: smoothing a curve; editing the overall form of a curve while preserving its details; and approximating a curve within any given error tolerance for scan conversion. We present m ..."
Abstract

Cited by 149 (5 self)
 Add to MetaCart
We describe a multiresolution curve representation, based on wavelets, that conveniently supports a variety of operations: smoothing a curve; editing the overall form of a curve while preserving its details; and approximating a curve within any given error tolerance for scan conversion. We present methods to support continuous levels of smoothing as well as direct manipulation of an arbitrary portion of the curve; the control points, as well as the discrete nature of the underlying hierarchical representation, can be hidden from the user. The multiresolution representation requires no extra storage beyond that of the original control points, and the algorithms using the representation are both simple and fast.
Data compression and harmonic analysis
 IEEE Trans. Inform. Theory
, 1998
"... In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory... ..."
Abstract

Cited by 140 (24 self)
 Add to MetaCart
In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory...