Results 1  10
of
96
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 461 (17 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community for the development and performance evaluation of sparse matrix algorithms. The collection includes software for accessing and managing the collection, from MATLAB, Fortran, and C.
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 190 (14 self)
 Add to MetaCart
(Show Context)
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 181 (12 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 133 (12 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
Graph mining: laws, generators, and algorithms
 ACM COMPUT SURV (CSUR
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in ..."
Abstract

Cited by 112 (7 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: “How can we generate synthetic but realistic graphs? ” To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.
PEGASUS: A PetaScale Graph Mining System Implementation and Observations
 IEEE INTERNATIONAL CONFERENCE ON DATA MINING
, 2009
"... Abstract—In this paper, we describe PEGASUS, an open source Peta Graph Mining library which performs typical graph mining tasks such as computing the diameter of the graph, computing the radius of each node and finding the connected components. As the size of graphs reaches several Giga, Tera or P ..."
Abstract

Cited by 108 (24 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we describe PEGASUS, an open source Peta Graph Mining library which performs typical graph mining tasks such as computing the diameter of the graph, computing the radius of each node and finding the connected components. As the size of graphs reaches several Giga, Tera or Petabytes, the necessity for such a library grows too. To the best of our knowledge, PEGASUS is the first such library, implemented on the top of the HADOOP platform, the open source version of MAPREDUCE. Many graph mining operations (PageRank, spectral clustering, diameter estimation, connected components etc.) are essentially a repeated matrixvector multiplication. In this paper we describe a very important primitive for PEGASUS, called GIMV (Generalized Iterated MatrixVector multiplication). GIMV is highly optimized, achieving (a) good scaleup on the number of available machines (b) linear running time on the number of edges, and (c) more than 5 times faster performance over the nonoptimized version of GIMV. Our experiments ran on M45, one of the top 50 supercomputers in the world. We report our findings on several real graphs, including one of the largest publicly available Web Graphs, thanks to Yahoo!, with ≈ 6,7 billion edges. KeywordsPEGASUS; graph mining; hadoop I.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 99 (3 self)
 Add to MetaCart
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
Centerpiece subgraphs: Problem definition and fast solutions
 In KDD
, 2006
"... Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong t ..."
Abstract

Cited by 67 (22 self)
 Add to MetaCart
(Show Context)
Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong to. Isomorphic scenarios appear in law enforcement (find the mastermind criminal, connected to all current suspects), gene regulatory networks (find the protein that participates in pathways with all or most of the given Q proteins), viral marketing and many more. Connection subgraphs is an important first step, handling the case of Q=2 query nodes. Then, the connection subgraph algorithm finds the b intermediate nodes, that provide a good connection between the two original query nodes. Here we generalize the challenge in multiple dimensions: First, we allow more than two query nodes. Second, we allow a whole family of queries, ranging from ’OR ’ to ’AND’, with ’softAND ’ inbetween. Finally, we design and compare a fast approximation, and study the quality/speed tradeoff. We also present experiments on the DBLP dataset. The experiments confirm that our proposed method naturally deals with multisource queries and that the resulting subgraphs agree with our intuition. Wallclock timing results on the DBLP dataset show that our proposed approximation achieve good accuracy for about 6: 1 speedup. This material is based upon work supported by the
Scalable modeling of real graphs using Kronecker multiplication
 IN 24TH ICML
, 2007
"... Given a large, real graph, how can we generate a synthetic graph that matches its properties, i.e., it has similar degree distribution, similar (small) diameter, similar spectrum, etc? We propose to use “Kronecker graphs”, which naturally obey all of the above properties, and we present KronFit, a f ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
Given a large, real graph, how can we generate a synthetic graph that matches its properties, i.e., it has similar degree distribution, similar (small) diameter, similar spectrum, etc? We propose to use “Kronecker graphs”, which naturally obey all of the above properties, and we present KronFit, a fast and scalable algorithm for fitting the Kronecker graph generation model to real networks. A naive approach to fitting would take superexponential time. In contrast, KronFit takes linear time, by exploiting the structure of Kronecker product and by using sampling. Experiments on large real and synthetic graphs show that KronFit indeed mimics very well the patterns found in the target graphs. Once fitted, the model parameters and the resulting synthetic graphs can be used for anonymization, extrapolations, and graph summarization.
Fast Counting of Triangles in Large Real Networks: Algorithms and Laws
"... How can we quickly find the number of triangles in a large graph, without actually counting them? Triangles are important for real world social networks, lying at the heart of the clustering coefficient and of the transitivity ratio. However, straightforward and even approximate counting algorithms ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
How can we quickly find the number of triangles in a large graph, without actually counting them? Triangles are important for real world social networks, lying at the heart of the clustering coefficient and of the transitivity ratio. However, straightforward and even approximate counting algorithms can be slow, trying to execute or approximate the equivalent of a 3way database join. In this paper, we provide two algorithms, the EigenTriangle for counting the total number of triangles in a graph, and the EigenTriangleLocal algorithm that gives the count of triangles that contain a desired node. Additional contributions include the following: (a) We show that both algorithms achieve excellent accuracy, with up to ≈ 1000x faster execution time, on several, real graphs and (b) we discover two new power laws ( DegreeTriangle and TriangleParticipation laws) with surprising properties. Figure 1. Speedup ratio versus accuracy for the Wikipedia web graph ( ≈ 3, 1M nodes, ≈ 37M edges). Proposed method achieves 1021x faster time, for 97.4 % accuracy, compared to a typical competitor, the Node Iterator method. 1