Results 1  10
of
45
Monads for functional programming
, 1995
"... The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification o ..."
Abstract

Cited by 1309 (37 self)
 Add to MetaCart
The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification of a simple evaluator; how monads act as the basis of a datatype of arrays subject to inplace update; and how monads can be used to build parsers.
How to Declare an Imperative
, 1995
"... How can we integrate interaction into a purely declarative language? This tutorial describes a solution to this problem based on a monad. The solution has been implemented in the functional language Haskell and the declarative language Escher. Comparisons are given to other approaches to interaction ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
How can we integrate interaction into a purely declarative language? This tutorial describes a solution to this problem based on a monad. The solution has been implemented in the functional language Haskell and the declarative language Escher. Comparisons are given to other approaches to interaction based on synchronous streams, continuations, linear logic, and side effects.
A Critique of Standard ML
, 1992
"... Standard ML is an excellent language for many kinds of programming. It is safe, efficient, suitably abstract, and concise. There are many aspects of the language that work well. However, nothing is perfect: Standard ML has a few shortcomings. In some cases there are obvious solutions, and in other c ..."
Abstract

Cited by 94 (4 self)
 Add to MetaCart
Standard ML is an excellent language for many kinds of programming. It is safe, efficient, suitably abstract, and concise. There are many aspects of the language that work well. However, nothing is perfect: Standard ML has a few shortcomings. In some cases there are obvious solutions, and in other cases further research is required.
The Marriage of Effects and Monads
, 1998
"... this paper is to marry effects to monads, writing T for a computation that yields a value in and may have effects delimited by oe. Now we have that ( is ..."
Abstract

Cited by 92 (4 self)
 Add to MetaCart
this paper is to marry effects to monads, writing T for a computation that yields a value in and may have effects delimited by oe. Now we have that ( is
Functional Programming with Overloading and HigherOrder Polymorphism
, 1995
"... The Hindley/Milner type system has been widely adopted as a basis for statically typed functional languages. One of the main reasons for this is that it provides an elegant compromise between flexibility, allowing a single value to be used in different ways, and practicality, freeing the progr ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
The Hindley/Milner type system has been widely adopted as a basis for statically typed functional languages. One of the main reasons for this is that it provides an elegant compromise between flexibility, allowing a single value to be used in different ways, and practicality, freeing the programmer from the need to supply explicit type information. Focusing on practical applications rather than implementation or theoretical details, these notes examine a range of extensions that provide more flexible type systems while retaining many of the properties that have made the original Hindley/Milner system so popular. The topics discussed, some old, but most quite recent, include higherorder polymorphism and type and constructor class overloading. Particular emphasis is placed on the use of these features to promote modularity and reusability.
Languages of the Future
 In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference on Objectoriented programming systems, languages, and applications
, 2004
"... This paper explores a new point in the design space of formal reasoning systems  part programming language, part logical framework. The system is built on a programming language where the user expresses equality constraints between types and the type checker then enforces these constraints. This si ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
This paper explores a new point in the design space of formal reasoning systems  part programming language, part logical framework. The system is built on a programming language where the user expresses equality constraints between types and the type checker then enforces these constraints. This simple extension to the type system allows the programmer to describe properties of his program in the types of witness objects which can be thought of as concrete evidence that the program has the property desired. These techniques and two other rich typing mechanisms, rankN polymorphism and extensible kinds, create a powerful new programming idiom for writing programs whose types enforce semantic properties. A language with these features is both a practical programming language and a logic. This marriage between two previously separate entities increases the probability that users will apply formal methods to their programming designs. This kind of synthesis creates the foundations for the languages of the future.
Using Parameterized Signatures to Express Modular Structure
 POPL'96
, 1996
"... Module systems are a powerful, practical tool for managing the complexity of large software systems. Previous attempts to formulate a typetheoretic foundation for modular programming have been based on existential, dependent, or manifest types. These approaches can be distinguished by their use of ..."
Abstract

Cited by 67 (1 self)
 Add to MetaCart
Module systems are a powerful, practical tool for managing the complexity of large software systems. Previous attempts to formulate a typetheoretic foundation for modular programming have been based on existential, dependent, or manifest types. These approaches can be distinguished by their use of different quantifiers to package the operations that a module exports together with appropriate implementation types. In each case, the underlying type theory is simple and elegant, but significant and sometimes complex extensions are needed to account for features that are im portant in practical systems, such as separate compilation and propagation of type information between modules. This paper presents a simple typetheoretic fi'amework for modular programming using parameterized signatmes. The use of quantifiers is treated as a necessary, but independent concern. Using familiar concepts of polymorphism, the resulting module system is easy to understaud and admits true separate compilation. It is also very powerful, supporting highorder, polymorphic, and firstclass modules without further extension.
Computational types from a logical perspective
 Journal of Functional Programming
, 1998
"... Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the CurryHoward correspondence) to a novel intuitionistic modal propositional logic. We give natural deduction, sequent calculus and Hilbertstyle presentations of this logic and prove strong normalisation and confluence results. 1
Typing Haskell in Haskell
 Haskell Workshop
, 1999
"... Haskell benefits from a sophisticated type system, but implementors, programmers, and researchers suffer because it has no formal description. To remedy this shortcoming, we present a Haskell program that implements a Haskell typechecker, thus providing a mathematically rigorous specification in a n ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
Haskell benefits from a sophisticated type system, but implementors, programmers, and researchers suffer because it has no formal description. To remedy this shortcoming, we present a Haskell program that implements a Haskell typechecker, thus providing a mathematically rigorous specification in a notation that is familiar to Haskell users. We expect this program to fill a serious gap in current descriptions of Haskell, both as a starting point for discussions about existing features of the type system, and as a platform from which to explore new proposals.
Controlling Effects
 U.S. DEPARTMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
, 1996
"... Many computational effects, such as exceptions, state, or nondeterminism, can be conveniently specified in terms of monads. We investigate a technique for uniformly adding arbitrary such effects to MLlike languages, without requiring any structural changes to the programs themselves. Instead, we us ..."
Abstract

Cited by 49 (0 self)
 Add to MetaCart
Many computational effects, such as exceptions, state, or nondeterminism, can be conveniently specified in terms of monads. We investigate a technique for uniformly adding arbitrary such effects to MLlike languages, without requiring any structural changes to the programs themselves. Instead, we use monadic reflection, a new language construct for explicitly converting back and forth between representations of effects as behavior and as data. Using monadic reflection to characterize concisely all effects expressible with a given monad, we can give a precise meaning to the notion of simulating one effect by another, more general one. We isolate a simple condition allowing such a simulation, and in particular show that any monadic effect can be simulated by a continuation monad. In other words, under relatively mild assumptions on the base language (allowing formation of a suitably large answer type), control becomes a universal effect. Concluding the development, we show that this universal effect can itself