Results 1  10
of
90
Measurement and Analysis of Online Social Networks
 In Proceedings of the 5th ACM/USENIX Internet Measurement Conference (IMC’07
, 2007
"... Online social networking sites like Orkut, YouTube, and Flickr are among the most popular sites on the Internet. Users of these sites form a social network, which provides a powerful means of sharing, organizing, and finding content and contacts. The popularity of these sites provides an opportunity ..."
Abstract

Cited by 688 (15 self)
 Add to MetaCart
(Show Context)
Online social networking sites like Orkut, YouTube, and Flickr are among the most popular sites on the Internet. Users of these sites form a social network, which provides a powerful means of sharing, organizing, and finding content and contacts. The popularity of these sites provides an opportunity to study the characteristics of online social network graphs at large scale. Understanding these graphs is important, both to improve current systems and to design new applications of online social networks. This paper presents a largescale measurement study and analysis of the structure of multiple online social networks. We examine data gathered from four popular online social networks: Flickr, YouTube, LiveJournal, and Orkut. We crawled the publicly accessible user links on each site, obtaining a large portion of each social network’s graph. Our data set contains over 11.3 million users and 328 million links. We believe that this is the first study to examine multiple online social networks at scale. Our results confirm the powerlaw, smallworld, and scalefree properties of online social networks. We observe that the indegree of user nodes tends to match the outdegree; that the networks contain a densely connected core of highdegree nodes; and that this core links small groups of strongly clustered, lowdegree nodes at the fringes of the network. Finally, we discuss the implications of these structural properties for the design of social network based systems.
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 263 (16 self)
 Add to MetaCart
(Show Context)
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
RMAT: A recursive model for graph mining
 In Fourth SIAM International Conference on Data Mining (SDM’ 04
, 2004
"... How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer ..."
Abstract

Cited by 246 (17 self)
 Add to MetaCart
(Show Context)
How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer virus spread?”). The heart of the problem is finding the properties of real graphs that seem to persist over multiple disciplines. We list such “laws ” and, more importantly, we propose a simple, parsimonious model, the “recursive matrix ” (RMAT) model, which can quickly generate realistic graphs, capturing the essence of each graph in only a few parameters. Contrary to existing generators, our model can trivially generate weighted, directed and bipartite graphs; it subsumes the celebrated ErdősRényi model as a special case; it can match the power law behaviors, as well as the deviations from them (like the “winner does not take it all ” model of Pennock et al. [21]). We present results on multiple, large real graphs, where we show that our parameter fitting algorithm (AutoMATfast) fits them very well. 1
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 243 (14 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
DIMES: Let the Internet measure itself
 Computer Communication Review
, 2005
"... Abstract — Today’s Internet maps, which are all collected from a small number of vantage points, are falling short of being accurate. We suggest here a paradigm shift for this task. DIMES is a distributed measurement infrastructure for the Internet that is based on the deployment of thousands of lig ..."
Abstract

Cited by 206 (33 self)
 Add to MetaCart
(Show Context)
Abstract — Today’s Internet maps, which are all collected from a small number of vantage points, are falling short of being accurate. We suggest here a paradigm shift for this task. DIMES is a distributed measurement infrastructure for the Internet that is based on the deployment of thousands of light weight measurement agents around the globe. We describe the rationale behind DIMES deployment, discuss its design tradeoffs and algorithmic challenges, and analyze the structure of the Internet as it seen with DIMES. I.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 199 (17 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
PlanetaryScale Views on a Large InstantMessaging Network
"... We present a study of anonymized data capturing a month of highlevel communication activities within the whole of the Microsoft Messenger instantmessaging system. We examine characteristics and patterns that emerge from the collective dynamics of large numbers of people, rather than the actions an ..."
Abstract

Cited by 158 (6 self)
 Add to MetaCart
(Show Context)
We present a study of anonymized data capturing a month of highlevel communication activities within the whole of the Microsoft Messenger instantmessaging system. We examine characteristics and patterns that emerge from the collective dynamics of large numbers of people, rather than the actions and characteristics of individuals. The dataset contains summary properties of 30 billion conversations among 240 million people. From the data, we construct a communication graph with 180 million nodes and 1.3 billion undirected edges, creating the largest social network constructed and analyzed to date. We report on multiple aspects of the dataset and synthesized graph. We find that the graph is wellconnected and robust to node removal. We investigate on a planetaryscale the oftcited report that people are separated by “six degrees of separation” and find that the average path length among Messenger users is 6.6. We also find that people tend to communicate more with each other when they have similar age, language, and location, and that crossgender conversations are both more frequent and of longer duration than conversations with the same gender.
Graph mining: laws, generators, and algorithms
 ACM COMPUT SURV (CSUR
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in ..."
Abstract

Cited by 131 (7 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: “How can we generate synthetic but realistic graphs? ” To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 126 (4 self)
 Add to MetaCart
(Show Context)
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
ANF: A Fast and Scalable Tool for Data Mining in Massive Graphs
 NTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
, 2002
"... Graphs are an increasingly important data source, with such important graphs as the Internet and the Web. Other familiar graphs include CAD circuits, phone records, gene sequences, city streets, social networks and academic citations. Any kind of relationship, such as actors appearing in movies, can ..."
Abstract

Cited by 124 (18 self)
 Add to MetaCart
(Show Context)
Graphs are an increasingly important data source, with such important graphs as the Internet and the Web. Other familiar graphs include CAD circuits, phone records, gene sequences, city streets, social networks and academic citations. Any kind of relationship, such as actors appearing in movies, can be represented as a graph. This work presents a data mining tool, called ANF, that can quickly answer a number of interesting questions on graphrepresented data, such as the following. How robust is the Internet to failures? What are the most influential database papers? Are there gender differences in movie appearance patterns? At its core, ANF is based on a fast and memoryefficient approach for approximating the complete "neighbourhood function" for a graph. For the Internet graph (268K nodes), ANF's highlyaccurate approximation is more than 700 times faster than the exact computation. This reduces the running time from nearly a day to a matter of a minute or two, allowing users to perform ad hoc drilldown tasks and to repeatedly answer questions about changing data sources. To enable this drilldown, ANF employs new techniques for approximating neighbourhoodtype functions for graphs with distinguished nodes and/or edges. When compared to the best existing approximation, ANF's approach is both faster and more accurate, given the same resources. Additionally, unlike previous approaches, ANF scales gracefully to handle disk resident graphs. Finally, we present some of our results from mining large graphs using ANF.