Results 1 
4 of
4
Maximum cardinality resonant sets and maximal alternating sets of hexagonal systems
"... It is shown that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set. In particular, a maximal alternating set of a hexagonal system need not contain a maximum cardinality resonant set, thus disproving a previously stated conjecture. It is known that maximum c ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
It is shown that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set. In particular, a maximal alternating set of a hexagonal system need not contain a maximum cardinality resonant set, thus disproving a previously stated conjecture. It is known that maximum cardinality resonant sets and maximal alternating sets are canonical, but the proofs of these two theorems are analogous and lengthy. A new conjecture is proposed and it is shown that the validity of the conjecture allows short proofs of the aforementioned two results. The conjecture holds for catacondensed hexagonal systems and for all normal hexagonal systems up to ten hexagons. Also, it is shown that the Fries number can be arbitrarily larger than the Clar number.
Polyhedral Combinatorics of Benzenoid Problems
 Lect. Notes Comput. Sci
, 1998
"... Many chemical properties of benzenoid hydrocarbons can be understood in terms of the maximum number of mutually resonant hexagons, or Clar number, of the molecules. Hansen and Zheng (1994) formulated this problem as an integer program and conjectured, based on computational results, that solving the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Many chemical properties of benzenoid hydrocarbons can be understood in terms of the maximum number of mutually resonant hexagons, or Clar number, of the molecules. Hansen and Zheng (1994) formulated this problem as an integer program and conjectured, based on computational results, that solving the linear programming relaxation always yields integral solutions. We prove this conjecture showing that the constraint matrices of these problems are unimodular. This establishes the integrality of the relaxation polyhedra since the linear programs are in standard form. However, the matrices are not, in general, totally unimodular as is often the case with other combinatorial optimization problems that give rise to integral polyhedra. Similar results are proved for the Fries number, another optimization problem for benzenoids. In a previous paper, Hansen and Zheng (1992) showed that a certain minimum weight cut cover problem defined for benzenoids yields an upper bound for the Clar number and...
The Clar formulas of a . . .
"... It is shown that the number of Clar formulas of a Kekuléan benzenoid system B is equal to the number of subgraphs of the resonance graph of B isomorphic to the Cl(B)dimensional hypercube, where Cl(B) is the Clar number of B. ..."
Abstract
 Add to MetaCart
It is shown that the number of Clar formulas of a Kekuléan benzenoid system B is equal to the number of subgraphs of the resonance graph of B isomorphic to the Cl(B)dimensional hypercube, where Cl(B) is the Clar number of B.