Results 1 
3 of
3
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
Grammar Rewriting
 Proceedings 11th International Conference on Automated Deduction
, 1991
"... We present a term rewriting procedure based on congruence closure that can be used with arbitrary equational theories. This procedure is motivated by the pragmatic need to prove equations in equational theories where confluence can not be achieved. The procedure uses context free grammars to represe ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We present a term rewriting procedure based on congruence closure that can be used with arbitrary equational theories. This procedure is motivated by the pragmatic need to prove equations in equational theories where confluence can not be achieved. The procedure uses context free grammars to represent equivalence classes of terms. The procedure rewrites grammars rather than terms and uses congruence closure to maintain certain congruence properties of the grammar. Grammars provide concise representations of large term sets. Infinite term sets can be represented with finite grammars and exponentially large term sets can be represented with linear sized grarmnars. Although the procedure is primarily intended for use in nonconfluent theories, it also provides a new kind of confluence that can be used to give canoni cal rewriting systems for theories that are difficult to handle in other ways. For example, under grammar rewriting there is a finite canonical rewrite system for idempotent semigroups, a theory which has been shown not to have any finite canonical system under traditional notions of rewriting.
The Kleene equality for graphs
 Proceedings of the 31th International Symposium on Mathematical Foundations of Computer Science (MFCS 2006), Bratislave (Slovakia), number 4162 in Lecture Notes in Computer Science
, 2006
"... Abstract. In order to generalize the Kleene theorem from the free monoid to richer algebraic structures, we consider the non deterministic acceptance by a finite automaton of subsets of vertices of a graph. The subsets accepted in such a way are the equational subsets of vertices of the graph in the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. In order to generalize the Kleene theorem from the free monoid to richer algebraic structures, we consider the non deterministic acceptance by a finite automaton of subsets of vertices of a graph. The subsets accepted in such a way are the equational subsets of vertices of the graph in the sense of Mezei and Wright. We introduce the notion of deterministic acceptance by finite automaton. A graph satisfies the Kleene equality if the two acceptance modes are equivalent, and in this case, the equational subsets form a Boolean algebra. We establish that the infinite grid and the transition graphs of deterministic pushdown automata satisfy the Kleene equality and we present families of graphs in which the free product of graphs preserves the Kleene equality. 1