Results 1  10
of
29
The Theory of LEGO  A Proof Checker for the Extended Calculus of Constructions
, 1994
"... LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO is intended to be used for interactively constructing proofs in mathematical theories presented in these logics. I have developed LEGO over six years, starting from an implementation of the Calculus of Constructions by G erard Huet. LEGO has been used for problems at the limits of our abilities to do formal mathematics. In this thesis I explain some aspects of the metatheory of LEGO's type systems leading to a machinechecked proof that typechecking is decidable for all three type theories supported by LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended and f...
Some lambda calculus and type theory formalized
 Journal of Automated Reasoning
, 1999
"... Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention redex positions or residuals. Then we outline the meta theory of Pure Type Systems, leading to the strengthening lemma. One novelty is our use of named variables for the formalization. Along the way we point out what we feel has been learned about general issues of formalizing mathematics, emphasizing the search for formal definitions that are convenient for formal proof and convincingly represent the intended informal concepts.
Generic programming within dependently typed programming
 In Generic Programming, 2003. Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl
, 2003
"... Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by prog ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by programming within a dependently typed language, using data as codes for types. 1.
Pure type systems formalized
 Proceedings of the International Conference on Typed Lambda Calculi and Applications
, 1993
"... ..."
Elimination with a Motive
 Types for Proofs and Programs (Proceedings of the International Workshop, TYPES’00), volume 2277 of LNCS
, 2002
"... I present a tactic, BasicElim, for Type Theory based proof systems to apply elimination rules in a refinement setting. Applicable rules are parametric in their conclusion, expressing the leverage hypotheses ~x yield on any \Phi ~x we choose. \Phi represents the motive for an elimination: BasicElim' ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
I present a tactic, BasicElim, for Type Theory based proof systems to apply elimination rules in a refinement setting. Applicable rules are parametric in their conclusion, expressing the leverage hypotheses ~x yield on any \Phi ~x we choose. \Phi represents the motive for an elimination: BasicElim's job is to construct a \Phi suited to the goal at hand. If these ~x inhabit an instance of \Phi's domain, I adopt a technique standard in `folklore', generalizing the ~x and expressing the restriction by equation. A novel notion of = readily permits dependent equations, and a second tactic, Unify, simpifies the equational hypotheses thus appearing in subgoals. Given such technology, it becomes effective to express properties of datatypes, relations and functions in this style. A small extension couples BasicElim with rewriting, allowing complex techniques to be packaged in a single rule. 1
Formal Objects in Type Theory Using Very Dependent Types
 In Foundations of Object Oriented Languages 3
, 1996
"... In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over a wellfounded domain. Using the propositionsastypes correspondence, abstract data types can be identified with logical theories, and proofs of the theories are the objects that inhabit the corresponding ADT. 1 Introduction In the past decade, there has been considerable progress in developing formal account of a theory of objects. One property of object oriented languages that make them popular is that they attack the problem of scale: all object oriented languages provide mechanisms for providing software modularity and reuse. In addition, the mechanisms are intuitive enough to be followed easily by novice programmers. During the same decade, the body of formal mathematics has be...
Closure Under AlphaConversion
 In The Informal Proceeding of the 1993 Workshop on Types for Proofs and Programs
, 1993
"... this paper appears in Types for Proofs and Programs: International Workshop TYPES'93, Nijmegen, May 1993, Selected Papers, LNCS 806. abstraction, compute a type for its body in an extended context; to compute a type for an application, compute types for its left and right components, and check that ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
this paper appears in Types for Proofs and Programs: International Workshop TYPES'93, Nijmegen, May 1993, Selected Papers, LNCS 806. abstraction, compute a type for its body in an extended context; to compute a type for an application, compute types for its left and right components, and check that they match appropriately. Lets use the algorithm to compute a type for a = [x:ø ][x:oe]x. FAILURE: no rule applies because x 2 Dom (x:ø )
Implicit Syntax
 Informal Proceedings of First Workshop on Logical Frameworks
, 1992
"... A proof checking system may support syntax that is more convenient for users than its `official' language. For example LEGO (a typechecker for several systems related to the Calculus of Constructions) has algorithms to infer some polymorphic instantiations (e.g. pair 2 true instead of pair nat bo ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
A proof checking system may support syntax that is more convenient for users than its `official' language. For example LEGO (a typechecker for several systems related to the Calculus of Constructions) has algorithms to infer some polymorphic instantiations (e.g. pair 2 true instead of pair nat bool 2 true) and universe levels (e.g. Type instead of Type(4)). Users need to understand such features, but do not want to know the algorithms for computing them. In this note I explain these two features by nondeterministic operational semantics for "translating" implicit syntax to the fully explicit underlying formal system. The translations are sound and complete for the underlying type theory, and the algorithms (which I will not talk about) are sound (not necessarily complete) for the translations. This note is phrased in terms of a general class of type theories. The technique described has more general application. 1 Introduction Consider the usual formal system, !, for simp...
Pure Type Systems with Definitions
, 1993
"... In this paper, an extension of Pure Type Systems (PTS's) with definitions is presented. We prove this extension preserves many of the properties of PTS's. The main result is a proof that for many PTS's, including the Calculus of Constructions, this extension preserves strong normalisation. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
In this paper, an extension of Pure Type Systems (PTS's) with definitions is presented. We prove this extension preserves many of the properties of PTS's. The main result is a proof that for many PTS's, including the Calculus of Constructions, this extension preserves strong normalisation.