Results 1  10
of
58
Dependently Typed Functional Programs and their Proofs
, 1999
"... Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs ..."
Abstract

Cited by 70 (13 self)
 Add to MetaCart
Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs may readily be specified and established. In particular, it develops technology for programming with dependent inductive families of datatypes and proving those programs correct. It demonstrates the considerable advantage to be gained by indexing data structures with pertinent characteristic information whose soundness is ensured by typechecking, rather than human effort. Type theory traditionally presents safe and terminating computation on inductive datatypes by means of elimination rules which serve as induction principles and, via their associated reduction behaviour, recursion operators [Dyb91]. In the programming language arena, these appear somewhat cumbersome and give rise to unappealing code, complicated by the inevitable interaction between case analysis on dependent types and equational reasoning on their indices which must appear explicitly in the terms. Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of
Generic programming within dependently typed programming
 In Generic Programming, 2003. Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl
, 2003
"... Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by prog ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by programming within a dependently typed language, using data as codes for types. 1.
A functional quantum programming language
 In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
, 2005
"... This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are inte ..."
Abstract

Cited by 46 (12 self)
 Add to MetaCart
This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive operational semantics of irreversible quantum computations, realisable as quantum circuits. The quantum circuit model is also given a formal categorical definition via the category FQC. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings, which may lead to the collapse of the quantum wavefunction, explicit. Strict programs are free from measurement, and hence preserve superpositions and entanglement. A denotational semantics of QML programs is presented, which maps QML terms
Indexed InductionRecursion
, 2001
"... We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in ..."
Abstract

Cited by 44 (16 self)
 Add to MetaCart
We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in intuitionistic type theory. The more restricted of the two axiomatization arises naturally by considering indexed inductiverecursive de nitions as initial algebras in slice categories, whereas the other admits a more general and convenient form of an introduction rule.
Focusing on binding and computation
 In IEEE Symposium on Logic in Computer Science
, 2008
"... Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused sequent calculus with two kinds of implication, of opposite polarity. The representational arrow extends systems of definitional reflection with a notion of scoped inference rules, which are used to represent binding. On the other hand, the usual computational arrow classifies recursive functions defined by patternmatching. Unlike many previous approaches, both kinds of implication are connectives in a single logic, which serves as a rich logical framework capable of representing inference rules that mix binding and computation. 1
The Gentle Art of Levitation
"... We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a de ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a description. Datatypegeneric programming thus becomes ordinary programming. We show some of the resulting generic operations and deploy them in particular, useful ways on the datatype of datatype descriptions itself. Surprisingly this apparently selfsupporting setup is achievable without paradox or infinite regress. 1.
A Universe of Binding and Computation
"... We construct a logical framework supporting datatypes that mix binding and computation, implemented as a universe in the dependently typed programming language Agda 2. We represent binding pronominally, using wellscoped de Bruijn indices, so that types can be used to reason about the scoping of var ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
We construct a logical framework supporting datatypes that mix binding and computation, implemented as a universe in the dependently typed programming language Agda 2. We represent binding pronominally, using wellscoped de Bruijn indices, so that types can be used to reason about the scoping of variables. We equip our universe with datatypegeneric implementations of weakening, substitution, exchange, contraction, and subordinationbased strengthening, so that programmers need not reimplement these operations for each individual language they define. In our mixed, pronominal setting, weakening and substitution hold only under some conditions on types, but we show that these conditions can be discharged automatically in many cases. Finally, we program a variety of standard difficult test cases from the literature, such as normalizationbyevaluation for the untyped λcalculus, demonstrating that we can express detailed invariants about variable usage in a program’s type while still writing clean and clear code.
Structuring quantum effects: Superoperators as arrows
 Mathematical Structures in Computer Science, special issue on Quantum Programming Languages
, 2006
"... We show that quantum computation can be decomposed in a pure classical (functional) part and an effectful part modeling probabilities and measurement. The effectful part can be modeled using a generalization of monads called arrows. Both the functional and effectful parts can be elegantly expressed ..."
Abstract

Cited by 16 (8 self)
 Add to MetaCart
We show that quantum computation can be decomposed in a pure classical (functional) part and an effectful part modeling probabilities and measurement. The effectful part can be modeled using a generalization of monads called arrows. Both the functional and effectful parts can be elegantly expressed in the Haskell programming language. 1
Exploring the regular tree types
 In Types for Proofs and Programs
, 2004
"... Abstract. In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s inbuilt equality at each type, taking a complementary approach to that of Benke, Dyb ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
Abstract. In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s inbuilt equality at each type, taking a complementary approach to that of Benke, Dybjer and Jansson [7]. We also give a generic definition of map, taking our inspiration from Jansson and Jeuring [21]. Finally, we equip the regular universe with the partial derivative which can be interpreted functionally as Huet’s notion of ‘zipper’, as suggested by McBride in [27] and implemented (without the fixpoint case) in Generic Haskell by Hinze, Jeuring and Löh [18]. We aim to show through these examples that generic programming can be ordinary programming in a dependently typed language. 1
A partial formalisation of a dependently typed language as an inductiverecursive family
 IN PROCEEDINGS OF THE TYPES MEETING 2006
, 2007
"... It is demonstrated how a dependently typed lambda calculus (a logical framework) can be formalised inside a language with inductiverecursive families. The formalisation does not use raw terms; the welltyped terms are defined directly. It is hence impossible to create illtyped terms. As an exampl ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
It is demonstrated how a dependently typed lambda calculus (a logical framework) can be formalised inside a language with inductiverecursive families. The formalisation does not use raw terms; the welltyped terms are defined directly. It is hence impossible to create illtyped terms. As an example of programming with strong invariants, and to show that the formalisation is usable, normalisation is proved. Moreover, this proof seems to be the first formal account of normalisation by evaluation for a dependently typed language.