Results 1  10
of
57
Relational Properties of Domains
 Information and Computation
, 1996
"... New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property of mixed initiality/finality is transferred to a corresponding property of invariant relations. The existence of invariant relations is proved under completeness assumptions about the notion of relation. We show how this leads to simpler proofs of the computational adequacy of denotational semantics for functional programming languages with userdeclared datatypes. We show how the initiality/finality property of invariant relations can be specialized to yield an induction principle for admissible subsets of recursively defined domains, generalizing the principle of structural induction for inductively defined sets. We also show how the initiality /finality property gives rise to the coinduct...
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
Structural Induction and Coinduction in a Fibrational Setting
 Information and Computation
, 1997
"... . We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for in ..."
Abstract

Cited by 70 (15 self)
 Add to MetaCart
. We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for initial algebras is admissible, and dually, in the presence of quotient types, the coinduction principle for terminal coalgebras is admissible. After giving an alternative formulation of induction in terms of binary relations, we combine both principles and obtain a mixed induction/coinduction principle which allows us to reason about minimal solutions X = oe(X) where X may occur both positively and negatively in the type constructor oe. We further strengthen these logical principles to deal with contexts and prove that such strengthening is valid when the (abstract) logic we consider is contextually/functionally complete. All the main results follow from a basic result about adjunc...
Categories and groupoids
, 1971
"... In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, 37, 58, 65] 1). By contrast, the use of groupoids was confined to a small number of pioneering articles, notably by Ehresmann [12] and Mackey [57], which were largely ignored by the mathematical community. Indeed groupoids were generally considered at that time not to be a subject for serious study. It was argued by several wellknown mathematicians that group theory sufficed for all situations where groupoids might be used, since a connected groupoid could be reduced to a group and a set. Curiously, this argument, which makes no appeal to elegance, was not applied to vector spaces: it was well known that the analogous reduction in this case is not canonical, and so is not available, when there is extra structure, even such simple structure as an endomorphism. Recently, Corfield in [41] has discussed methodological issues in mathematics with this topic, the resistance to the notion of groupoids, as a prime example. My book was intended chiefly as an attempt to reverse this general assessment of the time by presenting applications of groupoids to group theory
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
A Theory of Recursive Domains with Applications to Concurrency
 In Proc. of LICS ’98
, 1997
"... Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains. ..."
Abstract

Cited by 24 (14 self)
 Add to MetaCart
Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains.
A Logical View Of Concurrent Constraint Programming
, 1995
"... . Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
. Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent work it was shown that the denotational semantics of determinate concurrent constraint programming languages forms a fibred categorical structure called a hyperdoctrine, which is used as the basis of the categorical formulation of firstorder logic. What this shows is that the combinators of determinate CCP can be viewed as logical connectives. In this paper we extend these ideas to the operational semantics of such languages and thus make available similar analogies for a much broader variety of languages including indeterminate CCP languages and concurrent blockstructured imperative languages. CR Classification: F3.1, F3.2, D1.3, D3.3 Key words: Concurrent constraint programming, simula...
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
We investigate the development of theories of types and computability via realizability.
The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
, 2007
"... Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future.