Results 1  10
of
169
An Analysis of FirstOrder Logics of Probability
 Artificial Intelligence
, 1990
"... : We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater than ..."
Abstract

Cited by 272 (18 self)
 Add to MetaCart
: We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater than .9." The second approach puts a probability on possible worlds, and is appropriate for giving semantics to formulas describing degrees of belief, such as "The probability that Tweety (a particular bird) flies is greater than .9." We show that the two approaches can be easily combined, allowing us to reason in a straightforward way about statistical information and degrees of belief. We then consider axiomatizing these logics. In general, it can be shown that no complete axiomatization is possible. We provide axiom systems that are sound and complete in cases where a complete axiomatization is possible, showing that they do allow us to capture a great deal of interesting reasoning about prob...
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 224 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
A Logic for Reasoning about Probabilities
 Information and Computation
, 1990
"... We consider a language for reasoning about probability which allows us to make statements such as “the probability of E, is less than f ” and “the probability of E, is at least twice the probability of E,, ” where E, and EZ are arbitrary events. We consider the case where all events are measurable ( ..."
Abstract

Cited by 214 (19 self)
 Add to MetaCart
We consider a language for reasoning about probability which allows us to make statements such as “the probability of E, is less than f ” and “the probability of E, is at least twice the probability of E,, ” where E, and EZ are arbitrary events. We consider the case where all events are measurable (i.e., represent measurable sets) and the more general case, which is also of interest in practice, where they may not be measurable. The measurable case is essentially a formalization of (the propositional fragment of) Nilsson’s probabilistic logic. As we show elsewhere, the general (nonmeasurable) case corresponds precisely to replacing probability measures by DempsterShafer belief functions. In both cases, we provide a complete axiomatization and show that the problem of deciding satistiability is NPcomplete, no worse than that of propositional logic. As a tool for proving our complete axiomatizations, we give a complete axiomatization for reasoning about Boolean combinations of linear inequalities, which is of independent interest. This proof and others make crucial use of results from the theory of linear programming. We then extend the language to allow reasoning about conditional probability and show that the resulting logic is decidable and completely axiomatizable, by making use of the theory of real closed fields. ( 1990 Academic Press. Inc 1.
ConGolog, a concurrent programming language based on the situation calculus: language and implementation
, 1998
"... As an alternative to planning, an approach to highlevel agent control based on concurrent program execution is considered. The language includes facilities for prioritizing the concurrent execution, interrupting the execution when certain conditions become true, and dealing with exogenous actions. ..."
Abstract

Cited by 206 (37 self)
 Add to MetaCart
As an alternative to planning, an approach to highlevel agent control based on concurrent program execution is considered. The language includes facilities for prioritizing the concurrent execution, interrupting the execution when certain conditions become true, and dealing with exogenous actions. The language di ers from other procedural formalisms for concurrency in that the initial state can be incompletely speci ed and the primitive actions can be userde ned by axioms in the situation calculus. In a companion paper, a formal de nition in the situation calculus of such a programming language is presented and illustrated with detailed examples. In this paper, the mathematical properties of the programming language are explored. 1
Complexity, Decidability and Undecidability Results for DomainIndependent Planning
 ARTIFICIAL INTELLIGENCE
, 1995
"... In this paper, we examine how the complexity of domainindependent planning with STRIPSstyle operators depends on the nature of the planning operators. We show ..."
Abstract

Cited by 134 (25 self)
 Add to MetaCart
In this paper, we examine how the complexity of domainindependent planning with STRIPSstyle operators depends on the nature of the planning operators. We show
The Complexity Of Propositional Proofs
 Bulletin of Symbolic Logic
, 1995
"... This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 102 (0 self)
 Add to MetaCart
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
A New Correctness Proof of the NelsonOppen Combination Procedure
 Frontiers of Combining Systems, volume 3 of Applied Logic Series
, 1996
"... The NelsonOppen combination procedure, which combines satisfiability procedures for a class of firstorder theories by propagation of equalities between variables, is one of the most general combination methods in the field of theory combination. We describe a new nondeterministic version of the p ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
The NelsonOppen combination procedure, which combines satisfiability procedures for a class of firstorder theories by propagation of equalities between variables, is one of the most general combination methods in the field of theory combination. We describe a new nondeterministic version of the procedure that has been used to extend the Constraint Logic Programming Scheme to unions of constraint theories. The correctness proof of the procedure that we give in this paper not only constitutes a novel and easier proof of Nelson and Oppen's original results, but also shows that equality sharing between the satisfiability procedures of the component theories, the main idea of the method, can be confined to a restricted set of variables.