Results 1  10
of
27
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Small gaps between primes
"... ABSTRACT. We use short divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η> 0, a positive proportion of consecutive primes are within 1 + η times the average spacing between ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
ABSTRACT. We use short divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η> 0, a positive proportion of consecutive primes are within 1 + η times the average spacing between primes. 4 1.
On the Maximal Difference between an Element and its Inverse modulo n
 Periodica Mathematica Hungarica 47 (2003), 111–117. MR2024977 (2004k:11006
"... Abstract. We investigate the distribution of n − M(n) where M(n) =max{a − b  : 1 ≤ a, b ≤ n − 1andab ≡ 1 (mod n)}. Exponential sums provide a natural tool for obtaining upper bounds on this quantity. Here we use results about the distribution of integers with a divisor in a given interval to obtai ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Abstract. We investigate the distribution of n − M(n) where M(n) =max{a − b  : 1 ≤ a, b ≤ n − 1andab ≡ 1 (mod n)}. Exponential sums provide a natural tool for obtaining upper bounds on this quantity. Here we use results about the distribution of integers with a divisor in a given interval to obtain lower bounds on n − M(n). We also present some heuristic arguments showing that these lower bounds are probably tight, and thus our technique can be a more appropriate tool to study n − M(n) thana more traditional way using exponential sums. 1.
ANALYTIC PROBLEMS FOR ELLIPTIC CURVES
, 2005
"... Abstract. We consider some problems of analytic number theory for elliptic curves which can be considered as analogues of classical questions around the distribution of primes in arithmetic progressions to large moduli, and to the question of twin primes. This leads to some local results on the dist ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. We consider some problems of analytic number theory for elliptic curves which can be considered as analogues of classical questions around the distribution of primes in arithmetic progressions to large moduli, and to the question of twin primes. This leads to some local results on the distribution of the group structures of elliptic curves defined over a prime finite field, exhibiting an interesting dichotomy for the occurence of the possible groups. (This paper was initially written in 2000/01, but after a four year wait for a referee report, it is now withdrawn and deposited in the arXiv). Contents
Primes in Tuples I
"... We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. E ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, pn+1 − pn lim inf =0. n→ ∞ log pn We will quantify this result further in a later paper (see (1.9) below).
Euclidean rings of algebraic integers
 Canad. J. Math
"... Abstract. Let K be a finite Galois extension of the field of rational numbers with unit rank greater than 3. We prove that the ring of integers of K is a Euclidean domain if and only if it is a principal ideal domain. This was previously known under the assumption of the generalized Riemann hypothes ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Abstract. Let K be a finite Galois extension of the field of rational numbers with unit rank greater than 3. We prove that the ring of integers of K is a Euclidean domain if and only if it is a principal ideal domain. This was previously known under the assumption of the generalized Riemann hypothesis for Dedekind zeta functions. We now prove this unconditionally. 1
On values taken by the largest prime factor of shifted primes
 Journal of the Australian Mathematical Society
"... Let P denote the set of prime numbers, and let P(n) denote the largest prime factor of an integer n> 1. We show that, for every real number 32/17 < η < (4 + 3 √ 2)/4, there exists a constant c(η)> 1 such that for every integer a � = 0, the set � p ∈ P: p = P(q − a) for some prime q with p η < q < c( ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Let P denote the set of prime numbers, and let P(n) denote the largest prime factor of an integer n> 1. We show that, for every real number 32/17 < η < (4 + 3 √ 2)/4, there exists a constant c(η)> 1 such that for every integer a � = 0, the set � p ∈ P: p = P(q − a) for some prime q with p η < q < c(η) p η � has relative asymptotic density one in the set of all prime numbers. Moreover, in the range 2 ≤ η < (4+3 √ 2)/4, one can take c(η) = 1+ε for any fixed ε> 0. In particular, our results imply that for every real number 0.486 ≤ ϑ ≤ 0.531, the relation P(q − a) ≍ q ϑ holds for infinitely many primes q. We use this result to derive a lower bound on the number of distinct prime divisors of the value of the Carmichael function taken on a product of shifted primes. Finally, we study iterates of the map q ↦ → P(q − a) for a> 0, and show that for infinitely many primes q, this map can be iterated at least (log log q) 1+o(1) times before it terminates. 1.
Small gaps in coefficients of Lfunctions and Bfree numbers in short intervals
, 2005
"... We discuss questions related to the nonexistence of gaps in the series defining modular forms and other arithmetic functions of various types, and improve results of Serre, Balog & Ono and Alkan using new results about exponential sums and the distribution of Bfree numbers. ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We discuss questions related to the nonexistence of gaps in the series defining modular forms and other arithmetic functions of various types, and improve results of Serre, Balog & Ono and Alkan using new results about exponential sums and the distribution of Bfree numbers.