Results 1 
1 of
1
Multifrontal Computation with the Orthogonal Factors of Sparse Matrices
 SIAM Journal on Matrix Analysis and Applications
, 1994
"... . This paper studies the solution of the linear least squares problem for a large and sparse m by n matrix A with m n by QR factorization of A and transformation of the righthand side vector b to Q T b. A multifrontalbased method for computing Q T b using Householder factorization is presented ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
. This paper studies the solution of the linear least squares problem for a large and sparse m by n matrix A with m n by QR factorization of A and transformation of the righthand side vector b to Q T b. A multifrontalbased method for computing Q T b using Householder factorization is presented. A theoretical operation count for the K by K unbordered grid model problem and problems defined on graphs with p nseparators shows that the proposed method requires O(NR ) storage and multiplications to compute Q T b, where NR = O(n log n) is the number of nonzeros of the upper triangular factor R of A. In order to introduce BLAS2 operations, Schreiber and Van Loan's StorageEfficientWY Representation [SIAM J. Sci. Stat. Computing, 10(1989),pp. 5557] is applied for the orthogonal factor Q i of each frontal matrix F i . If this technique is used, the bound on storage increases to O(n(logn) 2 ). Some numerical results for the grid model problems as well as HarwellBoeing problems...