Results 1 
2 of
2
On Fast and Provably Secure Message Authentication Based on Universal Hashing
 In Advances in Cryptology – CRYPTO ’96
, 1996
"... There are wellknown techniques for message authentication using universal hash functions. This approach seems very promising, as it provides schemes that are both efficient and provably secure under reasonable assumptions. This paper contributes to this line of research in two ways. First, it analy ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
(Show Context)
There are wellknown techniques for message authentication using universal hash functions. This approach seems very promising, as it provides schemes that are both efficient and provably secure under reasonable assumptions. This paper contributes to this line of research in two ways. First, it analyzes the basic construction and some variants under more realistic and practical assumptions. Second, it shows how these schemes can be efficiently implemented, and it reports on the results of empirical performance tests that demonstrate that these schemes are competitive with other commonly employed schemes whose security is less wellestablished. 1 Introduction Message Authentication. Message authentication schemes are an important security tool. As more and more data is being transmitted over networks, the need for secure, highspeed, softwarebased message authentication is becoming more acute. The setting for message authentication is the following. Two parties A and B agree on a secre...
Factoring by electronic mail
, 1990
"... In this paper we describe our distributed implementation of two factoring algorithms. the elliptic curve method (ecm) and the multiple polynomial quadratic sieve algorithm (mpqs). Since the summer of 1987. our ermimplementation on a network of MicroVAX processors at DEC’s Systems Research Center h ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
In this paper we describe our distributed implementation of two factoring algorithms. the elliptic curve method (ecm) and the multiple polynomial quadratic sieve algorithm (mpqs). Since the summer of 1987. our ermimplementation on a network of MicroVAX processors at DEC’s Systems Research Center has factored several most and more wanted numbers from the Cunningham project. In the summer of 1988. we implemented the multiple polynomial quadratic sieve algorithm on rhe same network On this network alone. we are now able to factor any!@I digit integer, or to find 35 digit factors of numbers up to 150 digits long within one month. To allow an even wider distribution of our programs we made use of electronic mail networks For the distribution of the programs and for interprocessor communicatton. Even during the mitial stage of this experiment machines all over the United States and at various places in Europe and Ausnalia conhibuted 15 percent of the total factorization effort. At all the sites where our program is running we only use cycles that would otherwise have been idle. This shows that the enormous computational task of factoring 100 digit integers with the current algoritluns can be completed almost for free. Since we use a negligible fraction of the idle cycles of alI the machines on the worldwide elecnonic mail networks. we could factor 100 digit integers within a few days with a little more help.