Results 1  10
of
198
Nested datatypes
 In MPCâ€™98, volume 1422 of LNCS
, 1998
"... Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both th ..."
Abstract

Cited by 79 (5 self)
 Add to MetaCart
Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both theoretically important and useful in practice. The aim of this paper is to suggest a functorial semantics for such datatypes, with an associated calculational theory that mirrors and extends the standard theory for regular datatypes. Though elegant and generic, the proposed approach appears more limited than one would like, and some of the limitations are discussed. 1
Types, Abstraction, and Parametric Polymorphism, Part 2
, 1991
"... The concept of relations over sets is generalized to relations over an arbitrary category, and used to investigate the abstraction (or logicalrelations) theorem, the identity extension lemma, and parametric polymorphism, for Cartesianclosedcategory models of the simply typed lambda calculus and P ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
The concept of relations over sets is generalized to relations over an arbitrary category, and used to investigate the abstraction (or logicalrelations) theorem, the identity extension lemma, and parametric polymorphism, for Cartesianclosedcategory models of the simply typed lambda calculus and PLcategory models of the polymorphic typed lambda calculus. Treatments of Kripke relations and of complete relations on domains are included.
A functional quantum programming language
 In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
, 2005
"... This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are inte ..."
Abstract

Cited by 47 (12 self)
 Add to MetaCart
This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive operational semantics of irreversible quantum computations, realisable as quantum circuits. The quantum circuit model is also given a formal categorical definition via the category FQC. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings, which may lead to the collapse of the quantum wavefunction, explicit. Strict programs are free from measurement, and hence preserve superpositions and entanglement. A denotational semantics of QML programs is presented, which maps QML terms
Tensor products of modules for a vertex operator algebras and vertex tensor categories
 in: Lie Theory and Geometry, in honor of Bertram Kostant
, 1994
"... In this paper, we present a theory of tensor products of classes of modules for a vertex operator algebra. We focus on motivating and explaining new structures and results in this theory, rather than on proofs, which are being presented in a series of papers beginning with [HL4] and [HL5]. An announ ..."
Abstract

Cited by 44 (5 self)
 Add to MetaCart
In this paper, we present a theory of tensor products of classes of modules for a vertex operator algebra. We focus on motivating and explaining new structures and results in this theory, rather than on proofs, which are being presented in a series of papers beginning with [HL4] and [HL5]. An announcement has also appeared [HL1].
Categories and groupoids
, 1971
"... In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, 37, 58, 65] 1). By contrast, the use of groupoids was confined to a small number of pioneering articles, notably by Ehresmann [12] and Mackey [57], which were largely ignored by the mathematical community. Indeed groupoids were generally considered at that time not to be a subject for serious study. It was argued by several wellknown mathematicians that group theory sufficed for all situations where groupoids might be used, since a connected groupoid could be reduced to a group and a set. Curiously, this argument, which makes no appeal to elegance, was not applied to vector spaces: it was well known that the analogous reduction in this case is not canonical, and so is not available, when there is extra structure, even such simple structure as an endomorphism. Recently, Corfield in [41] has discussed methodological issues in mathematics with this topic, the resistance to the notion of groupoids, as a prime example. My book was intended chiefly as an attempt to reverse this general assessment of the time by presenting applications of groupoids to group theory
HZalgebra spectra are differential graded algebras
 Amer. Jour. Math
, 2004
"... Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Qu ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Quillen equivalences between the differential graded modules and module spectra over these algebras. We use these equivalences in turn to produce algebraic models for rational stable model categories. We show that bascially any rational stable model category is Quillen equivalent to modules over a differential graded Qalgebra (with many objects). 1.
Elements Of The General Theory Of Coalgebras
, 1999
"... . Data Structures arising in programming are conveniently modeled by universal algebras. State based and object oriented systems may be described in the same way, but this requires that the state is explicitly modeled as a sort. From the viewpoint of the programmer, however, it is usually intend ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
. Data Structures arising in programming are conveniently modeled by universal algebras. State based and object oriented systems may be described in the same way, but this requires that the state is explicitly modeled as a sort. From the viewpoint of the programmer, however, it is usually intended that the state should be "hidden" with only certain features accessible through attributes and methods. States should become equal, if no external observation may distinguish them. It has recently been discovered that state based systems such as transition systems, automata, lazy data structures and objects give rise to structures dual to universal algebra, which are called coalgebras. Equality is replaced by indistinguishability and coinduction replaces induction as proof principle. However, as it turns out, one has to look at universal algebra from a more general perspective (using elementary category theoretic notions) before the dual concept is able to capture the relevant ...
Modular Monadic Semantics and Compilation
, 1998
"... Modular monadic semantics is a highlevel and modular form of denotational semantics. It is capable of capturing individual programming language features and their interactions. This thesis explores the theory and applications of modular monadic semantics, including: building blocks for individual p ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
Modular monadic semantics is a highlevel and modular form of denotational semantics. It is capable of capturing individual programming language features and their interactions. This thesis explores the theory and applications of modular monadic semantics, including: building blocks for individual programming features, equational reasoning with laws and axioms, modular proofs, program transformation, modular interpreters, and compiler construction. We will demonstrate that the modular monadic semantics framework makes programming languages easy to specify, reason about, and implement.