Results 1  10
of
108
Parallel merge sort
 SIAM Journal of Computing
, 1988
"... Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors and O(logn) time; the constant in the running time is small. We also give a more complex version of the algorithm for the EREW PRAM; it also uses n processors and O(logn) time. The constant in the runnin ..."
Abstract

Cited by 284 (2 self)
 Add to MetaCart
Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors and O(logn) time; the constant in the running time is small. We also give a more complex version of the algorithm for the EREW PRAM; it also uses n processors and O(logn) time. The constant in the running time is still moderate, though not as small. 1.
Applying parallel computation algorithms in the design of serial algorithms
 J. ACM
, 1983
"... Abstract. The goal of this paper is to point out that analyses of parallelism in computational problems have practical implications even when multiprocessor machines are not available. This is true because, in many cases, a good parallel algorithm for one problem may turn out to be useful for design ..."
Abstract

Cited by 234 (7 self)
 Add to MetaCart
Abstract. The goal of this paper is to point out that analyses of parallelism in computational problems have practical implications even when multiprocessor machines are not available. This is true because, in many cases, a good parallel algorithm for one problem may turn out to be useful for designing an efficient serial algorithm for another problem. A d ~ eframework d for cases like this is presented. Particular cases, which are discussed in this paper, provide motivation for examining parallelism in sorting, selection, minimumspanningtree, shortest route, maxflow, and matrix multiplication problems, as well as in scheduling and locational problems.
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & ..."
Abstract

Cited by 190 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
merging, and sorting in parallel models of computation
 in “Proc. 14th Annual ACM Sympos. on Theory of Cornput
, 1982
"... A variety of models have been proposed for the study of synchronous parallel computation. These models are reviewed and some prototype problems are studied further. Two classes of models are recognized, fixed connection networks and models based on a shared memory. Routing and sorting are prototype ..."
Abstract

Cited by 106 (3 self)
 Add to MetaCart
A variety of models have been proposed for the study of synchronous parallel computation. These models are reviewed and some prototype problems are studied further. Two classes of models are recognized, fixed connection networks and models based on a shared memory. Routing and sorting are prototype problems for the networks; in particular, they provide the basis for simulating the more powerful shared memory models. It is shown that a simple but important class of deterministic strategies (oblivious routing) is necessarily inefficient with respect to worst case analysis. Routing can be viewed as a special case of sorting, and the existence of an O(log n) sorting algorithm for some n processor fixed connection network has only recently been established by Ajtai, Komlos, and Szemeredi (“15th ACM Sympos. on Theory of Cornput., ” Boston, Mass., 1983, pp. l9). If the more powerful class of shared memory models is considered then it is possible to simply achieve an O(log n loglog n) sort via Valiant’s parallel merging algorithm, which it is shown can be implemented on certain models. Within a spectrum of shared memory models, it is shown that loglogn is asymptotically optimal for n processors to merge two sorted lists containing n elements. 0 1985 Academic Press, Inc.
Applications of parametric searching in geometric optimization
 J. Algorithms
, 1994
"... z Sivan Toledo x ..."
Expanders that Beat the Eigenvalue Bound: Explicit Construction and Applications
 Combinatorica
, 1993
"... For every n and 0 ! ffi ! 1, we construct graphs on n nodes such that every two sets of size n ffi share an edge, having essentially optimal maximum degree n 1\Gammaffi+o(1) . Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k ..."
Abstract

Cited by 89 (27 self)
 Add to MetaCart
For every n and 0 ! ffi ! 1, we construct graphs on n nodes such that every two sets of size n ffi share an edge, having essentially optimal maximum degree n 1\Gammaffi+o(1) . Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k+o(1) comparisons. 2. A k round selection algorithm using n 1+1=(2 k \Gamma1)+o(1) comparisons. 3. A depth 2 superconcentrator of size n 1+o(1) . 4. A depth k widesense nonblocking generalized connector of size n 1+1=k+o(1) . All of these results improve on previous constructions by factors of n\Omega\Gamma37 , and are optimal to within factors of n o(1) . These results are based on an improvement to the extractor construction of Nisan & Zuckerman: our algorithm extracts an asymptotically optimal number of random bits from a defective random source using a small additional number of truly random bits. 1
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
"... Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a su ..."
Abstract

Cited by 57 (15 self)
 Add to MetaCart
Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subset of at most r functions of F. This bound is nearly optimal in the worst case, and implies the existence of shallow cuttings, in the sense of [52], of small size in arrangements of bivariate algebraic functions. We also present numerous applications of these results, including: (i) data structures for several generalized threedimensional rangesearching problems; (ii) dynamic data structures for planar nearest and farthestneighbor searching under various fairly general distance functions; (iii) an improved (nearquadratic) algorithm for minimumweight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain geometric optimization problems in static and dynamic settings.
Optimal preprocessing for answering online product queries
, 1987
"... We examine the amount of preprocessing needed for answering certain online queries as fast as possible. We start with the following basic problem. Suppose we are given a semigroup (S,°). Let s 1,..., sn be elements of S. We want to answer online queries of the form, "What is the product s ..."
Abstract

Cited by 56 (3 self)
 Add to MetaCart
We examine the amount of preprocessing needed for answering certain online queries as fast as possible. We start with the following basic problem. Suppose we are given a semigroup (S,°). Let s 1,..., sn be elements of S. We want to answer online queries of the form, &quot;What is the product s i°s i +1 ° j −1 j n 1... °s °s? &quot; for any give ≤ i ≤ j ≤ n. We show that a preprocessing of Θ(n λ(k,n)) time and space is both necessary and sufficient to answer each such query in at most k steps, for any fixed k. The function λ(k,.) is the inverse of a certain function at the �k /2 �−th level of the primitive recursive hierarchy. In case linear preprocessing is desired, we show that one can answer each such query in at most O (α(n)) steps and that this is best possible. The function α(n) is the inverse Ackermann function. We also consider the following extended problem. Let T be a tree with an element of S associated with each of its vertices. We want to answer online queries of the form, &quot; What is the product of the elements associated with the vertices along the path from u to v? &quot; for any pair of vertices u and v in T. We derive results, which are similar to the above, for the preprocessing needed for answering such queries. All our sequential preprocessing algorithms can be parallelized efficiently to give optimal parallel algorithms which run in O (logn) time on a CREW PRAM. These parallel algorithms are optimal in both running time and total number of operations.
An ExpanderBased Approach to Geometric Optimization
 IN PROC. 9TH ANNU. ACM SYMPOS. COMPUT. GEOM
, 1993
"... We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach ..."
Abstract

Cited by 39 (16 self)
 Add to MetaCart
We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach
Optimal Doubly Logarithmic Parallel Algorithms Based On Finding All Nearest Smaller Values
, 1993
"... The all nearest smaller values problem is defined as follows. Let A = (a 1 ; a 2 ; : : : ; an ) be n elements drawn from a totally ordered domain. For each a i , 1 i n, find the two nearest elements in A that are smaller than a i (if such exist): the left nearest smaller element a j (with j ! i) a ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
The all nearest smaller values problem is defined as follows. Let A = (a 1 ; a 2 ; : : : ; an ) be n elements drawn from a totally ordered domain. For each a i , 1 i n, find the two nearest elements in A that are smaller than a i (if such exist): the left nearest smaller element a j (with j ! i) and the right nearest smaller element a k (with k ? i). We give an O(log log n) time optimal parallel algorithm for the problem on a CRCW PRAM. We apply this algorithm to achieve optimal O(log log n) time parallel algorithms for four problems: (i) Triangulating a monotone polygon, (ii) Preprocessing for answering range minimum queries in constant time, (iii) Reconstructing a binary tree from its inorder and either preorder or postorder numberings, (vi) Matching a legal sequence of parentheses. We also show that any optimal CRCW PRAM algorithm for the triangulation problem requires \Omega\Gammauir log n) time. Dept. of Computing, King's College London, The Strand, London WC2R 2LS, England. ...