Results 1 
3 of
3
Domain theoretic models of polymorphism
 Inf. Comput
, 1989
"... We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theo ..."
Abstract

Cited by 34 (2 self)
 Add to MetaCart
We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; the universal types of the calculus are interpreted as the category of continuous sections of the fibration. As a major example a new model for the polymorphic λcalculus is presented. In it a type is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic λcalculus as categories of continuous sections appears to be useful generally. For example, the technique also applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped that by pinpointing a key construction this paper will help towards a deeper understanding of models for the polymorphic λcalculus and the
Universal Profinite Domains
 Information and Computation
, 1987
"... . We introduce a bicartesian closed category of what we call profinite domains. Study of these domains is carried out through the use of an equivalent category of preorders in a manner similar to the information systems approach advocated by Dana Scott and others. A class of universal profinite dom ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
. We introduce a bicartesian closed category of what we call profinite domains. Study of these domains is carried out through the use of an equivalent category of preorders in a manner similar to the information systems approach advocated by Dana Scott and others. A class of universal profinite domains is defined and used to derive sufficient conditions for the profinite solution of domain equations involving continuous operators. As a special instance of this construction, a universal domain for the category SFP is demonstrated. Necessary conditions for the existence of solutions for domain equations over the profinites are also given and used to derive results about solutions of some equations. A new universal bounded complete domain is also demonstrated using an operator which has bounded complete domains as its fixed points. 1 Introduction. For our purposes a domain equation has the form X ¸ = F (X) where F is an operator on a class of semantic domains (typically, F is an endof...
Key words and phrases. Constructive settheory, Formal topology, Scott Domains.
"... Abstract. In this paper, the notions of information base and of translation between information bases are introduced; they have a very simple intuitive interpretation and can be taken as an alternative approach to domain theory. ..."
Abstract
 Add to MetaCart
Abstract. In this paper, the notions of information base and of translation between information bases are introduced; they have a very simple intuitive interpretation and can be taken as an alternative approach to domain theory.