Results 1  10
of
881
Atomic decomposition by basis pursuit
 SIAM Journal on Scientific Computing
, 1998
"... Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several meth ..."
Abstract

Cited by 1719 (48 self)
 Add to MetaCart
Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an “optimal ” superposition of dictionary elements, where optimal means having the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interiorpoint methods. We obtain reasonable success with a primaldual logarithmic barrier method and conjugategradient solver.
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined wi ..."
Abstract

Cited by 304 (15 self)
 Add to MetaCart
Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance. A. Background I.
A review of image denoising algorithms, with a new one
 Simul
, 2005
"... Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstand ..."
Abstract

Cited by 278 (2 self)
 Add to MetaCart
Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NLmeans) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise, ” defined as the difference between a digital image and its denoised version. The NLmeans algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L 2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 259 (17 self)
 Add to MetaCart
This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshaped elements at fine scales. These elements have many useful geometric multiscale features that set them apart from classical multiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−j, each element has an envelope which is aligned along a ‘ridge ’ of length 2−j/2 and width 2−j. We prove that curvelets provide an essentially optimal representation of typical objects f which are C2 except for discontinuities along C2 curves. Such representations are nearly as sparse as if f were not singular and turn out to be far more sparse than the wavelet decomposition of the object. For instance, the nterm partial reconstruction f C n obtained by selecting the n largest terms in the curvelet series obeys ‖f − f C n ‖ 2 L2 ≤ C · n−2 · (log n) 3, n → ∞. This rate of convergence holds uniformly over a class of functions which are C 2 except for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
Splines: A Perfect Fit for Signal/Image Processing
 IEEE SIGNAL PROCESSING MAGAZINE
, 1999
"... ..."
Adaptive Wavelet Thresholding for Image Denoising and Compression
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing ..."
Abstract

Cited by 238 (4 self)
 Add to MetaCart
The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing applications. The proposed threshold is simple and closedform, and it is adaptive to each subband because it depends on datadriven estimates of the parameters. Experimental results show that the proposed method, called BayesShrink, is typically within 5% of the MSE of the best softthresholding benchmark with the image assumed known. It also outperforms Donoho and Johnstone's SureShrink most of the time. The second part
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 215 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
A nonlocal algorithm for image denoising
 In CVPR
, 2005
"... We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the non local means ..."
Abstract

Cited by 215 (7 self)
 Add to MetaCart
We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the non local means (NLmeans), based on a non local averaging of all pixels in the image. Finally, we present some experiments comparing the NLmeans algorithm and the local smoothing filters. 1.
Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal through Wavelet Shrinkage
 IEEE Trans. Image Processing
, 1996
"... This paper examines the relationship between waveletbased image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following pro ..."
Abstract

Cited by 196 (11 self)
 Add to MetaCart
This paper examines the relationship between waveletbased image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following problem: given an image F defined on a square I, minimize over all g in the Besov space B 1 1 (L1 (I)) the functional #F  g# 2 L 2 (I) + ##g# B 1 1 (L 1 (I)) .Weusethetheoryof nonlinear wavelet image compression in L2 (I) to derive accurate error bounds for noise removal through wavelet shrinkage applied to images corrupted with i.i.d., mean zero, Gaussian noise. A new signaltonoise ratio, which we claim more accurately reflects the visual perception of noise in images, arises in this derivation. We present extensive computations that support the hypothesis that nearoptimal shrinkage parameters can be derived if one knows (or can estimate) only two parameters about an image F:thelarge...
Sparse Reconstruction by Separable Approximation
, 2008
"... Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing ( ..."
Abstract

Cited by 178 (27 self)
 Add to MetaCart
Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing (CS) are a few wellknown areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic (ℓ2) error term added to a sparsityinducing (usually ℓ1) regularization term. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (which is therefore separable in the unknowns) plus the original sparsityinducing regularizer. Our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. In addition to solving the standard ℓ2 − ℓ1 case, our framework yields an efficient solution technique for other regularizers, such as an ℓ∞norm regularizer and groupseparable (GS) regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard ℓ2 − ℓ1 problem, as well as being efficient on problems with other separable regularization terms.