Results 1  10
of
161
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE Trans Image Processing
, 2003
"... Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussi ..."
Abstract

Cited by 350 (18 self)
 Add to MetaCart
Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Waveletbased statistical signal processing using hidden Markov models
 IEEE Transactions on Signal Processing
, 1998
"... Abstract — Waveletbased statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many realworld signals. In this paper, we develop a new framework for statistical signal pr ..."
Abstract

Cited by 325 (52 self)
 Add to MetaCart
Abstract — Waveletbased statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many realworld signals. In this paper, we develop a new framework for statistical signal processing based on waveletdomain hidden Markov models (HMM’s) that concisely models the statistical dependencies and nonGaussian statistics encountered in realworld signals. Waveletdomain HMM’s are designed with the intrinsic properties of the wavelet transform in mind and provide powerful, yet tractable, probabilistic signal models. Efficient expectation maximization algorithms are developed for fitting the HMM’s to observational signal data. The new framework is suitable for a wide range of applications, including signal estimation, detection, classification, prediction, and even synthesis. To demonstrate the utility of waveletdomain HMM’s, we develop novel algorithms for signal denoising, classification, and detection. Index Terms — Hidden Markov model, probabilistic graph, wavelets.
Adaptive Wavelet Thresholding for Image Denoising and Compression
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing ..."
Abstract

Cited by 230 (4 self)
 Add to MetaCart
The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing applications. The proposed threshold is simple and closedform, and it is adaptive to each subband because it depends on datadriven estimates of the parameters. Experimental results show that the proposed method, called BayesShrink, is typically within 5% of the MSE of the best softthresholding benchmark with the image assumed known. It also outperforms Donoho and Johnstone's SureShrink most of the time. The second part
Bivariate Shrinkage Functions for WaveletBased Denoising Exploiting Interscale Dependency
, 2002
"... Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents i ..."
Abstract

Cited by 135 (4 self)
 Add to MetaCart
Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents in detail. For this purpose, new nonGaussian bivariate distributions are proposed, and corresponding nonlinear threshold functions (shrinkage functions) are derived from the models using Bayesian estimation theory. The new shrinkage functions do not assume the independence of wavelet coefficients. We will show three image denoising examples in order to show the performance of these new bivariate shrinkage rules. In the second example, a simple subbanddependent datadriven image denoising system is described and compared with effective datadriven techniques in the literature, namely VisuShrink, SureShrink, BayesShrink, and hidden Markov models. In the third example, the same idea is applied to the dualtree complex wavelet coefficients.
Bayesian TreeStructured Image Modeling using Waveletdomain Hidden Markov Models
 IEEE Trans. Image Processing
, 1999
"... Waveletdomain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of realworld data. One potential drawback to the HMT framework ..."
Abstract

Cited by 131 (15 self)
 Add to MetaCart
Waveletdomain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of realworld data. One potential drawback to the HMT framework is the need for computationally expensive iterative training to fit an HMT model to a given data set (using the ExpectationMaximization algorithm, for example). In this paper, we greatly simplify the HMT model by exploiting the inherent selfsimilarity of realworld images. This simplified model specifies the HMT parameters with just nine metaparameters (independent of the size of the image and the number of wavelet scales). We also introduce a Bayesian universal HMT (uHMT) that fixes these nine parameters. The uHMT requires no training of any kind. While extremely simple, we show using a series of image estimation /denoising experiments that these two new models retain nearly all of the key structure modeled by the full HMT. Finally, we propose a fast shiftinvariant HMT estimation algorithm that outperforms other waveletbased estimators in the current literature, both in meansquare error and visual metrics.
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 122 (18 self)
 Add to MetaCart
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Calibration and Empirical Bayes Variable Selection
 Biometrika
, 1997
"... this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were also ..."
Abstract

Cited by 114 (19 self)
 Add to MetaCart
this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were also discovered independently by Donoho & Johnstone (1994) in the wavelet regression context, where they refer to it as the universal hard thresholding rule
Bayesian Denoising of Visual Images in the Wavelet Domain
 LECTURE NOTES IN STATISTICS
, 1999
"... ..."
Empirical Bayes Selection of Wavelet Thresholds
 ANN. STATIST
, 2005
"... This paper explores a class of empirical Bayes methods for leveldependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavytailed density. The mixing weight, or sparsity parameter, for each lev ..."
Abstract

Cited by 87 (3 self)
 Add to MetaCart
This paper explores a class of empirical Bayes methods for leveldependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavytailed density. The mixing weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation
The practical implementation of Bayesian model selection
 Institute of Mathematical Statistics
, 2001
"... In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is r ..."
Abstract

Cited by 85 (3 self)
 Add to MetaCart
In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is relevant for model selection. However, the practical implementation of this approach often requires carefully tailored priors and novel posterior calculation methods. In this article, we illustrate some of the fundamental practical issues that arise for two different model selection problems: the variable selection problem for the linear model and the CART model selection problem.