Results 1  10
of
125
Informationtheoretic asymptotics of Bayes methods
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1990
"... In the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian density and sh ..."
Abstract

Cited by 107 (10 self)
 Add to MetaCart
In the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian density and show that the asymptotic distance is (d/2Xlogn)+ c, where d is the dimension of the parameter vector. Therefore, the relative entropy rate D,,/n converges to zero at rate (logn)/n. The constant c, which we explicitly identify, depends only on the prior density function and the Fisher information matrix evaluated at the true parameter value. Consequences are given for density estimation, universal data compression, composite hypothesis testing, and stockmarket portfolio selection.
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Local Statistics For Random Domino Tilings Of The Aztec Diamond
 Duke Math. J
, 1996
"... . We prove an asymptotic formula for the probability that, if one chooses a domino tiling of a large Aztec diamond according to the uniform distribution on such tilings, the tiling will contain a domino covering a given pair of adjacent lattice squares. This formula quantifies the effect of the diam ..."
Abstract

Cited by 80 (11 self)
 Add to MetaCart
. We prove an asymptotic formula for the probability that, if one chooses a domino tiling of a large Aztec diamond according to the uniform distribution on such tilings, the tiling will contain a domino covering a given pair of adjacent lattice squares. This formula quantifies the effect of the diamond 's boundary conditions on the behavior of typical tilings; in addition, it yields a new proof of the arctic circle theorem of Jockusch, Propp, and Shor. Our approach is to use the saddle point method to estimate certain weighted sums of squares of Krawtchouk polynomials (whose relevance to domino tilings is demonstrated elsewhere), and to combine these estimates with some exponential sum bounds to deduce our final result. This approach generalizes straightforwardly to the case in which the probability distribution on the set of tilings incorporates bias favoring horizontal over vertical tiles or vice versa. We also prove a fairly general large deviation estimate for domino tilings of sim...
On Convergence Rates in the Central Limit Theorems for Combinatorial Structures
, 1998
"... Flajolet and Soria established several central limit theorems for the parameter "number of components" in a wide class of combinatorial structures. In this paper, we shall prove a simple theorem which applies to characterize the convergence rates in their central limit theorems. This th ..."
Abstract

Cited by 67 (8 self)
 Add to MetaCart
Flajolet and Soria established several central limit theorems for the parameter "number of components" in a wide class of combinatorial structures. In this paper, we shall prove a simple theorem which applies to characterize the convergence rates in their central limit theorems. This theorem is also applicable to arithmetical functions. Moreover, asymptotic expressions are derived for moments of integral order. Many examples from different applications are discussed.
Pointwise semigroup methods and stability of viscous shock waves
 Indiana Univ. Math. J
, 1998
"... Abstract. Considered as rest points of ODE on L p, stationary viscous shock waves present a critical case for which standard semigroup methods do not su ce to determine stability. More precisely, there is no spectral gap between stationary modes and essential spectrum of the linearized operator abou ..."
Abstract

Cited by 63 (32 self)
 Add to MetaCart
Abstract. Considered as rest points of ODE on L p, stationary viscous shock waves present a critical case for which standard semigroup methods do not su ce to determine stability. More precisely, there is no spectral gap between stationary modes and essential spectrum of the linearized operator about the wave, a fact which precludes the usual analysis by decomposition into invariant subspaces. For this reason, there have been until recently no results on shock stability from the semigroup perspective except in the scalar or totally compressive case ([Sat], [K.2], resp.), each of which can be reduced to the standard semigroup setting by Sattinger's method of weighted norms. We overcome this di culty in the general case by the introduction of new, pointwise semigroup techniques, generalizing earlier work of Howard [H.1], Kapitula [K.12], and Zeng [Ze,LZe]. These techniques allow us to do \hard &quot; analysis in PDE within the dynamical systems/semigroup framework: in particular, to obtain sharp, global pointwise bounds on the Green's function of the linearized operator around the wave, su cient for the analysis of linear and nonlinear stability. The method is general, and should nd applications
Basic Analytic Combinatorics of Directed Lattice Paths
 Theoretical Computer Science
, 2001
"... This paper develops a unified enumerative and asymptotic theory of directed 2dimensional lattice paths in halfplanes and quarterplanes. The lattice paths are speci ed by a finite set of rules that are both time and space homogeneous, and have a privileged direction of increase. (They are then ess ..."
Abstract

Cited by 60 (13 self)
 Add to MetaCart
This paper develops a unified enumerative and asymptotic theory of directed 2dimensional lattice paths in halfplanes and quarterplanes. The lattice paths are speci ed by a finite set of rules that are both time and space homogeneous, and have a privileged direction of increase. (They are then essentially 1dimensional objects.) The theory relies on a specific "kernel method" that provides an important decomposition of the algebraic generating functions involved, as well as on a generic study of singularities of an associated algebraic curve. Consequences are precise computable estimates for the number of lattice paths of a given length under various constraints (bridges, excursions, meanders) as well as a characterization of the limit laws associated to several basic parameters of paths.
A new upper bound on the minimal distance of selfdual codes
 IEEE Trans. Inform. Theory
, 1990
"... ..."
CapacityAchieving Ensembles for the Binary Erasure Channel with Bounded Complexity
 IEEE TRANS. INFORMATION THEORY
, 2004
"... We present two sequences of ensembles of nonsystematic irregular repeataccumulate codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity. This is in contrast to all previous constructions of capacityachievi ..."
Abstract

Cited by 46 (13 self)
 Add to MetaCart
We present two sequences of ensembles of nonsystematic irregular repeataccumulate codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity. This is in contrast to all previous constructions of capacityachieving sequences of ensembles whose complexity grows at least like the log of the inverse of the gap to capacity. The new bounded complexity result is achieved by allowing a su#cient number of state nodes in the Tanner graph representing the codes.