Results 1  10
of
34
On The Power Of Languages For The Manipulation Of Complex Objects
 In Proceedings of International Workshop on Theory and Applications of Nested Relations and Complex Objects
, 1993
"... Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased and logicprogramming oriented languages have all been considered. This paper presents a general model for complex objects, and languages for it based on the thre ..."
Abstract

Cited by 121 (6 self)
 Add to MetaCart
Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased and logicprogramming oriented languages have all been considered. This paper presents a general model for complex objects, and languages for it based on the three paradigms. The algebraic language generalizes those presented in the literature; it is shown to be related to the functional style of programming advocated by Backus. The notion of domain independence familiar from relational databases is defined, and syntactic restrictions (referred to as safety conditions) on calculus queries are formulated, that guarantee domain independence. The main results are: The domainindependent calculus, the safe calculus, the algebra, and the logicprogramming oriented language have equivalent expressive power. In particular, recursive queries, such as the transitive closure, can be expressed in each of the languages. For this result, the algebra needs the pow...
Structural Recursion as a Query Language
 In Proceedings of 3rd International Workshop on Database Programming Languages
, 1991
"... We propose a programming paradigm that tries to get close to both the semantic simplicity of relational algebra, and the expressive power of unrestricted programming languages. Its main computational engine is structural recursion on sets. All programming is done within a "nicely" typed lambda calcu ..."
Abstract

Cited by 103 (9 self)
 Add to MetaCart
We propose a programming paradigm that tries to get close to both the semantic simplicity of relational algebra, and the expressive power of unrestricted programming languages. Its main computational engine is structural recursion on sets. All programming is done within a "nicely" typed lambda calculus, as in Machiavelli [OBB89]. A guiding principle is that how queries are implemented is as important as whether they can be implemented. As in relational algebra, the meaning of any relation transformer is guaranteed to be a total map taking finite relations to finite relations. A naturally restricted class of programs written with structural recursion has precisely the expressive power of the relational algebra. The same programming paradigm scales up, yielding query languages for the complexobject model [AB89]. Beyond that, there are, for example, efficient programs for transitive closure and we are also able to write programs that move out of sets, and then perhaps back to sets, as l...
Towards Tractable Algebras for Bags
, 1993
"... Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in ..."
Abstract

Cited by 61 (4 self)
 Add to MetaCart
Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power, and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power, and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator. Invited to a special issue of the Journal of Computer and System Sciences selected from ACM Princ. of Database Systems,...
Finitely Representable Databases
, 1995
"... : We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
: We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove that in this context the basic properties of queries (satisfiability, containment, equivalence, etc.) are nonrecursive. We investigate the theory of finitely representable models and prove that it differs strongly from both classical model theory and finite model theory. In particular, we show that most of the well known theorems of either one fail (compactness, completeness, locality, 0/1 laws, etc.). An immediate consequence is the lack of tools to consider the definability of queries in the relational calculus over finitely representable databases. We illustrate this very challenging problem through some classical examples. We then mainly concentrate on dense order databases, and exhibit...
Normal Forms and Conservative Properties for Query Languages over Collection Types
 In Proceedings of 12th ACM Symposium on Principles of Database Systems
, 1993
"... Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and out ..."
Abstract

Cited by 54 (25 self)
 Add to MetaCart
Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and output has height at most o definable in a nested relational query language without powerset operator is independent of the height of intermediate expressions used. Our proof holds regardless of whether the language is used for querying sets, bags, or lists, even in the presence of variant types. Moreover, the normal forms are useful in a general approach to query optimization. Paredaens and Van Gucht proved a similar result for the special case when i = o = 1. Their result is complemented by Hull and Su who demonstrated the failure of independence when powerset operator is present and i = o = 1. The theorem of Hull and Su was generalized to all i and o by Grumbach and Vianu. Our result genera...
The Power of Languages for the Manipulation of Complex Values
 VLDB Journal
, 1995
"... Abstract. Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased, and logicprogramming oriented languages have all been considered. This article presents a general model for complex values (i.e., values with hierarc ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Abstract. Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculusbased, and logicprogramming oriented languages have all been considered. This article presents a general model for complex values (i.e., values with hierarchical structures), and languages for it based on the three paradigms. The algebraic language generalizes those presented in the literature; it is shown to be related to the functional style of programming advocated by Backus (1978). The notion of domain independence (from relational databases) is defined, and syntactic restrictions (referred to as safety conditions) on calculus queries are formulated to guarantee domain independence. The main results are: The domainindependent calculus, the safe calculus, the algebra, and the logicprogramming oriented language have equivalent expressive power. In particular, recursive queries, such as the transitive closure, can be expressed in each of the languages. For this result, the algebra needs the powerset operation. A more restricted version of safety is presented, such that the restricted safe calculus is equivalent to the algebra without the powerset. The results are extended to the case where arbitrary functions and predicates are used in the languages. Key Words. Database, query language, complex value, complex object, database model.
Bounded Fixpoints for Complex Objects
, 1997
"... We study a query language for complexobject databases, which is designed to (1) express only tractable queries, and (2) be as expressive over flat relations as firstorder logic with fixpoints. The language is obtained by extending the nested relational algebra, NRA, with a "bounded fixpoint" opera ..."
Abstract

Cited by 32 (9 self)
 Add to MetaCart
We study a query language for complexobject databases, which is designed to (1) express only tractable queries, and (2) be as expressive over flat relations as firstorder logic with fixpoints. The language is obtained by extending the nested relational algebra, NRA, with a "bounded fixpoint" operator. Similar to results for flat relations, all tractable queries over ordered databases are expressible in this language. The main result consists in proving that this language is a conservative extension of the firstorder logic with fixpoints, or of the whilequeries (depending on the interpretation of the bounded fixpoint: inflationary or partial). That is, a query from flat relations to flat relations is expressible in our language if and only if it is expressible in firstorder logic with fixpoints, or in the whilequeries respectively. The proof technique for this theorem uses indexes to encode complex objects into flat relations. It can serve as basis for an implementation method of ...
Normal Forms And Conservative Extension Properties For Query Languages Over Collection Types
 Journal of Computer and System Sciences
, 1995
"... Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and outp ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and output has height at most o definable in a nested relational query language without powerset operator is independent of the height of intermediate expressions used. Our proof holds regardless of whether the language is used for querying sets, bags, or lists, even in the presence of variant types. Moreover, the normal forms are useful in a general approach to query optimization. Paredaens and Van Gucht proved a similar result for the special case when i = o = 1. Their result is complemented by Hull and Su who demonstrated the failure of independence when powerset operator is present and i = o = 1. The theorem of Hull and Su was generalized to all i and o by Grumbach and Vianu. Our result generali...
The Expressiveness of a Family of Finite Set Languages
 IN PROCEEDINGS OF 10TH ACM SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS
, 1991
"... In this paper we characterise exactly the complexity of a set based database language called SRL, which presents a unified framework for queries and updates. By imposing simple syntactic restrictions on it, we are able to express exactly the classes, P and LOGSPACE. We also discuss the role of orde ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
In this paper we characterise exactly the complexity of a set based database language called SRL, which presents a unified framework for queries and updates. By imposing simple syntactic restrictions on it, we are able to express exactly the classes, P and LOGSPACE. We also discuss the role of ordering in database query languages and show that the hom operator of Machiavelli language in [OBB89] does not capture all the orderindependent properties.